Skip to main content

ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic Diffusion Models

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Colonoscopy analysis, particularly automatic polyp segmentation and detection, is essential for assisting clinical diagnosis and treatment. However, as medical image annotation is labour- and resource-intensive, the scarcity of annotated data limits the effectiveness and generalization of existing methods. Although recent research has focused on data generation and augmentation to address this issue, the quality of the generated data remains a challenge, which limits the contribution to the performance of subsequent tasks. Inspired by the superiority of diffusion models in fitting data distributions and generating high-quality data, in this paper, we propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks. Specifically, ArSDM utilizes the ground-truth segmentation mask as a prior condition during training and adjusts the diffusion loss for each input according to the polyp/background size ratio. Furthermore, ArSDM incorporates a pre-trained segmentation model to refine the training process by reducing the difference between the ground-truth mask and the prediction mask. Extensive experiments on segmentation and detection tasks demonstrate the generated data by ArSDM could significantly boost the performance of baseline methods.

Y. Du and Y. Jiang—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Google Scholar 

  2. Bo, D., Wenhai, W., Deng-Ping, F., Jinpeng, L., Huazhu, F., Ling, S.: Polyp-PVT: Polyp segmentation with pyramidvision transformers (2021)

    Google Scholar 

  3. Chaitanya, K., et al.: Semi-supervised task-driven data augmentation for medical image segmentation. Med. Image Anal. 68, 101934 (2021)

    Article  Google Scholar 

  4. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  5. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  6. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  7. Jha, D., et al.: Kvasir-SEG: a segmented polyp dataset. In: Ro, Y.M., et al. (eds.) MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_37

    Chapter  Google Scholar 

  8. Kim, B., Ye, J.C.: Diffusion deformable model for 4D temporal medical image generation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention. MICCAI 2022. Lecture Notes in Computer Science, vol. 13431, pp. 539–548. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_51

  9. Ma, Y., et al.: Cycle structure and illumination constrained GAN for medical image enhancement. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 667–677. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_64

    Chapter  Google Scholar 

  10. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  11. Pinaya, W.H., et al.: Fast unsupervised brain anomaly detection and segmentation with diffusion models. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention. MICCAI 2022. LNCS, vol. 13438, pp. 705–714. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_67

  12. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  13. Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M.: Data augmentation using generative adversarial networks (cycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. 9(1), 16884 (2019)

    Article  Google Scholar 

  14. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. Int. J. Comput. Assist. Radiol. Surg. 9, 283–293 (2014)

    Article  Google Scholar 

  15. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)

    Google Scholar 

  16. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: International Conference on Learning Representations (2021)

    Google Scholar 

  17. Sun, P., et al.: Sparse r-cnn: End-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision And Pattern Recognition, pp. 14454–14463 (2021)

    Google Scholar 

  18. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging 35(2), 630–644 (2015)

    Article  Google Scholar 

  19. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans. Med. Imaging. 35, 630–644 (2016)

    Article  Google Scholar 

  20. Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthcare Eng. 2017, 4031790 (2017)

    Article  Google Scholar 

  21. Wang, W., et al.: Semantic image synthesis via diffusion models. arXiv preprint arXiv:2207.00050 (2022)

  22. Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention network for polyp segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 699–708. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_66

  23. Wolleb, J., Bieder, F., Sandkühler, R., Cattin, P.C.: diffusion models for medical anomaly detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention. MICCAI 2022. LNCS, vol. 13438, pp. 35–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_4

  24. Wu, L., Hu, Z., Ji, Y., Luo, P., Zhang, S.: Multi-frame collaboration for effective endoscopic video polyp detection via spatial-temporal feature transformation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 302–312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_29

    Chapter  Google Scholar 

  25. Xu, J., et al.: OfGAN: realistic rendition of synthetic colonoscopy videos. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 732–741. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_70

    Chapter  Google Scholar 

  26. Zhang, R., et al.: Lesion-Aware Dynamic Kernel for Polyp Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention. MICCAI 2022. LNCS, vol. 13433, pp. 99–109. Springer, Cham (2022).https://doi.org/10.1007/978-3-031-16437-8_10

  27. Zhang, R., Li, G., Li, Z., Cui, S., Qian, D., Yu, Y.: Adaptive context selection for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 253–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_25

    Chapter  Google Scholar 

  28. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

  29. Zhao, X., et al.: Semi-supervised spatial temporal attention network for video polyp segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention. MICCAI 2022. LNCS, vol. 13434, pp. 456–466. Springer, Cham (2022)

    Google Scholar 

  30. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  31. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgement

This work was supported in part by the Chinese Key-Area Research and Development Program of Guangdong Province (2020B0101350001), in part by the Shenzhen General Program (No. JCYJ20220530143600001), in part by the National Natural Science Foundation of China (NO. 61976250), in part by the Shenzhen-Hong Kong Joint Funding (No. SGDX20211123112401002), in part by the Shenzhen Science and Technology Program (NO. JCYJ20220818103001002, NO. JCYJ20220530141211024), and in part by the Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese University of Hong Kong, Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Li or Guanbin Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1274 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, Y. et al. (2023). ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic Diffusion Models. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14221. Springer, Cham. https://doi.org/10.1007/978-3-031-43895-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43895-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43894-3

  • Online ISBN: 978-3-031-43895-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics