Skip to main content

Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic Flows

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14287))

Included in the following conference series:

  • 231 Accesses

Abstract

Time-sensitive networks require timely and accurate monitoring of the status of the network. To achieve this, many devices send packets periodically, which are then aggregated and forwarded to the controller. Bounding the aggregate burstiness of the traffic is then crucial for effective resource management. In this paper, we are interested in bounding this aggregate burstiness for independent and periodic flows. A deterministic bound is tight only when flows are perfectly synchronized, which is highly unlikely in practice and would be overly pessimistic. We compute the probability that the aggregate burstiness exceeds some value. When all flows have the same period and packet size, we obtain a closed-form bound using the Dvoretzky-Kiefer-Wolfowitz inequality. In the heterogeneous case, we group flows and combine the bounds obtained for each group using the convolution bound. Our bounds are numerically close to simulations and thus fairly tight. The resulting aggregate burstiness estimated for a non-zero violation probability is considerably smaller than the deterministic one: it grows in \(\sqrt{n\log {n}}\), instead of n, where n is the number of flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouillard, A., Boyer, M., Le Corronc, E.: Deterministic Network Calculus: From Theory to Practical Implementation. Wiley-ISTE (2018)

    Google Scholar 

  2. Bouillard, A., Nikolaus, P., Schmitt, J.B.: Unleashing the power of paying multiplexing only once in stochastic network calculus. Proc. ACM Meas. Anal. Comput. Syst. 6(2), 31:1–31:27 (2022). https://doi.org/10.1145/3530897

  3. Bouillard, A., Nowak, T.: Fast symbolic computation of the worst-case delay in tandem networks and applications. Perform. Eval. 91, 270–285 (2015). https://doi.org/10.1016/j.peva.2015.06.016

    Article  Google Scholar 

  4. Chang, C.S., Chiu, Y.M., Song, W.T.: On the performance of multiplexing independent regulated inputs. In: Proceedings of the 2001 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS 2001, pp. 184–193. Association for Computing Machinery, New York, NY, USA (2001). https://doi.org/10.1145/378420.378782

  5. Ciucu, F., Burchard, A., Liebeherr, J.: Scaling properties of statistical end-to-end bounds in the network calculus. IEEE/ACM Trans. Network. (ToN) 14(6), 2300–2312 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Ciucu, F., Schmitt, J.: Perspectives on network calculus: no free lunch, but still good value. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM 2012, pp. 311–322. Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2342356.2342426

  7. Daigmorte, H., Boyer, M.: Traversal time for weakly synchronized can bus. In: Proceedings of the 24th International Conference on Real-Time Networks and Systems, RTNS 2016, pp. 35–44. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2997465.2997477, https://doi.org/10.1145/2997465.2997477

  8. Fidler, M., Rizk, A.: A guide to the stochastic network calculus. IEEE Commun. Surv. Tutorials 17(1), 92–105 (2015). https://doi.org/10.1109/COMST.2014.2337060

    Article  Google Scholar 

  9. Gentle, J.: Computational Statistics. Statistics and Computing, Springer New York (2009). https://doi.org/10.1007/978-0-387-98144-4. https://books.google.ch/books?id=mQ5KAAAAQBAJ

  10. Guillemin, F.M., Mazumdar, R.R., Rosenberg, C.P., Ying, Y.: A stochastic ordering property for leaky bucket regulated flows in packet networks. J. Appl. Probab. 44(2), 332–348 (2007). http://www.jstor.org/stable/27595845

  11. Jiang, Y.: A basic stochastic network calculus. In: Proceedings of the 2006 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM 2006, pp. 123–134. Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1159913.1159929

  12. Kesidis, G., Konstantopoulos, T.: Worst-case performance of a buffer with independent shaped arrival processes. IEEE Commun. Lett. 4(1), 26–28 (2000). https://doi.org/10.1109/4234.823539

    Article  MATH  Google Scholar 

  13. Le Boudec, J.-Y., Thiran, P. (eds.): Network Calculus. LNCS, vol. 2050. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45318-0

    Book  MATH  Google Scholar 

  14. Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18(3), 1269–1283 (1990). https://doi.org/10.1214/aop/1176990746

  15. Poloczek, F., Ciucu, F.: Scheduling analysis with martingales. Perform. Eval. 79, 56–72 (2014). https://doi.org/10.1016/j.peva.2014.07.004. http://www.sciencedirect.com/science/article/pii/S0166531614000674. Special Issue: Performance 2014

  16. Vojnovic, M., Le Boudec, J.Y.: Bounds for independent regulated inputs multiplexed in a service curve network element. In: IEEE Global Telecommunications Conference (Cat. No.01CH37270), GLOBECOM 2001, vol. 3, pp. 1857–1861 (2001). https://doi.org/10.1109/GLOCOM.2001.965896

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Mohammadhossein Tabatabaee , Anne Bouillard or Jean-Yves Le Boudec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tabatabaee, S.M., Bouillard, A., Le Boudec, JY. (2023). Quasi-Deterministic Burstiness Bound for Aggregate of Independent, Periodic Flows. In: Jansen, N., Tribastone, M. (eds) Quantitative Evaluation of Systems. QEST 2023. Lecture Notes in Computer Science, vol 14287. Springer, Cham. https://doi.org/10.1007/978-3-031-43835-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43835-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43834-9

  • Online ISBN: 978-3-031-43835-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics