Skip to main content

SIS-ASTROS: An Integrated Simulation Environment for the Artillery Saturation Rocket System (ASTROS)

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2022)

Abstract

Simulation is an important technique to support military training. There are different training goals depending on the different ranks of the military personnel being trained, which are addressed by different types of simulation (live, virtual, or constructive). However, a trend in current military training is the combination of different types of simulation in an integrated setup. Observing such kind of blended simulation, the Brazilian Army is making efforts to develop integrated simulation solutions. This work describes the conception of an integrated simulation environment for the Brazilian Army Artillery called SIS-ASTROS. Besides integrating different types of simulators, SIS-ASTROS presents a virtual tactical simulator to train ASTROS artillery batteries deployment activities of mid-rank officers. This simulator addresses aspects that can be classified as constructive, but also virtual ones. Due to this particularity in its design, the conception of this simulator represents an innovative contribution. Moreover, its development demanded solutions in the area of artificial intelligence, computer graphics, and distributed systems applied to simulation problems. This paper presents the key components of the integrated simulation system, highlighting the main contributions in the research and development of the virtual tactical simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEEE standard for modeling and simulation (m amp;s) high level architecture (HLA)– framework and rules. IEEE Std 1516-2010 (Revision of IEEE Std 1516-2000), pp. 1–38 (2010)

    Google Scholar 

  2. IEEE standard for modeling and simulation (m s) high level architecture (HLA)– federate interface specification. IEEE Std 1516.1-2010 (Revision of IEEE Std 1516.1-2000), pp. 1–378 (2010)

    Google Scholar 

  3. IEEE standard for distributed interactive simulation (DIS) – communication services and profiles. IEEE Std 1278.2-2015 (Revision of IEEE Std 1278.2-1995), pp. 1–42 (2015)

    Google Scholar 

  4. Algfoor, Z.A., Sunar, M.S., Kolivand, H.: A comprehensive study on pathfinding techniques for robotics and video games. Int. J. Comput. Games Technol. 2015, 7 (2015)

    Google Scholar 

  5. Allen, G., Smith, R.: After action review in military training simulations. In: Proceedings of Winter Simulation Conference, pp. 845–849 (1994). https://doi.org/10.1109/WSC.1994.717443

  6. AVIBRAS: Artillery Saturation Rocket System. http://www.avibras.com.br (2019). Accessed 10 Jan 2020

  7. Backes, G.C., Engel, T.A., Pozzer, C.T.: Rendering of large textures for real-time visualization (2018)

    Google Scholar 

  8. Backes, G.C., Frasson, A., Engel, T.A., Pozzer, C.T.: Rendering of large textures for real-time visualization (2017)

    Google Scholar 

  9. Balint, J.E.A., Allbeck, J.M., Hieb, M.R., Mason, G.: Automated simulation creation from military operations documents (2015)

    Google Scholar 

  10. Bohemia: Virtual battle field. https://bisimulations.com/products/virtual-battlespace

  11. Brondani, J.R., de Freitas, E.P., Silva, L.A.: A task-oriented and parameterized (semi) autonomous navigation framework for the development of simulation systems. Procedia Comput. Sci. 112, 534–543 (2017). https://doi.org/10.1016/j.procs.2017.08.161, http://www.sciencedirect.com/science/article/pii/S1877050917315181, knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 21st International Conference, KES-20176-8 September 2017, Marseille, France

  12. Brondani, J.R., de Lima Silva, L.A., Zacarias, E., de Freitas, E.P.: Pathfinding in hierarchical representation of large realistic virtual terrains for simulation systems. Expert Syst. Appl. 138, 112812 (2019). https://doi.org/10.1016/j.eswa.2019.07.029

    Article  Google Scholar 

  13. Cui, X., Shi, H.: A*-based pathfinding in modern computer games. Int. J. Comput. Sci. Netw. Secur. 11(1), 125–130 (2011)

    Google Scholar 

  14. of Defense, D.: DoD Modeling and Simulation (M &S) Glossary (DoD 5000.59-M). CreateSpace Independent Publishing Platform (2013)

    Google Scholar 

  15. Fong, G.: Adapting cots games for military simulation. In: Proceedings of the 2004 ACM SIGGRAPH International Conference on Virtual Reality Continuum and Its Applications in Industry, pp. 269–272. VRCAI 2004, ACM, New York, NY, USA (2004). https://doi.org/10.1145/1044588.1044645

  16. Frasson, A., Engel, T., Tadeu Pozzer, C.: Improving terrain visualization through procedural generation and hardware tessellation, pp. 218–221 (2016)

    Google Scholar 

  17. Frasson, A., Engel, T.A., Pozzer, C.T.: Efficient screen-space rendering of vector features on virtual terrains. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 7:1–7:10. I3D 2018, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3190834.3190851

  18. Frasson, A.T.A.: Planetary-scale terrain rendering. Mestrado em Programa de Pos-Graduacao em Ciencia da Computacao) - Universidade Federal de Santa Maria. (2018), Master thesis

    Google Scholar 

  19. Fray, A.: Context steering: behavior-driven steering at the macro scale. Game AI Pro 2, 183–193 (2015)

    Google Scholar 

  20. Hill, R.R., Miller, J.O.: A history of united states military simulation. In: 2017 Winter Simulation Conference (WSC), pp. 346–364 (2017). https://doi.org/10.1109/WSC.2017.8247799

  21. Hodson, D.D., Baldwin, R.O.: Characterizing, measuring, and validating the temporal consistency of live-virtual-constructive environments. SIMULATION 85(10), 671–682 (2009). https://doi.org/10.1177/0037549709340732

    Article  Google Scholar 

  22. Hodson, D.D., Hill, R.R.: The art and science of live, virtual, and constructive simulation for test and analysis. J. Defense Model. Simul. 11(2), 77–89 (2014). https://doi.org/10.1177/1548512913506620

    Article  Google Scholar 

  23. Kapadia, M., Badler, N.I.: Navigation and steering for autonomous virtual humans. Wiley Interdisc. Rev. Cogn. Sci. 4(3), 263–272 (2013)

    Article  Google Scholar 

  24. Löfstrand, B.: NATO education and training network federation architecture and FOM design (NETN FAFD). In: 12th CAX Forum (2017)

    Google Scholar 

  25. Masa: Masa SWORD: a complete wargame solution with automated forces for high-level training and analysis. https://masa-group.biz/products/sword (2016). Accessed 19 Jan 2020

  26. Meyer, R., Andre, T., Conning Chik, K., Liming, G.: Performance evidence management in live, virtual, and constructive training. J. Appl. Learn. Technol. 4(4) (2014)

    Google Scholar 

  27. Torres do Nascimento, B., Paulus Franzin, F., Tadeu Pozzer, C.: GPU-based real-time procedural distribution of vegetation on large-scale virtual terrains, pp. 157–15709 (2018). https://doi.org/10.1109/SBGAMES.2018.00027

  28. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1993)

    Book  MATH  Google Scholar 

  29. Nilsson, N.J.: Principles of Artificial Intelligence. Tioga Publishing Company (1980)

    Google Scholar 

  30. Pallavicini, F., Toniazzi, N., Argenton, L., Aceti, L., Mantovani, F.: Developing effective virtual reality training for military forces and emergency operators: from technology to human factors. In: International Conference on Modeling and Applied Simulation, MAS 2015, pp. 206–210. Dime University of Genoa (2015)

    Google Scholar 

  31. Pasquier, P., et al.: A serious game for massive training and assessment of French soldiers involved in forward combat casualty care (3D-SC1): development and deployment. JMIR Serious Games 4(1), e5 (2016)

    Article  Google Scholar 

  32. Paul, R.L., Nunes, R.C., Oliveira, V.D., Kunde, D.: Doctrine based multi-resolution HLA distributed simulation. In: Proceedings of the Symposium on Applied Computing, pp. 59–64. ACM (2017)

    Google Scholar 

  33. Pozzer., C., et al.: SIS-ASTROS: an integrated simulation system for the artillery saturation rocket system (ASTROS). In: Proceedings of the 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - SIMULTECH, pp. 194–201. INSTICC, SciTePress (2022). https://doi.org/10.5220/0011135400003274

  34. Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game developers conference. vol. 1999, pp. 763–782. Citeseer (1999)

    Google Scholar 

  35. Shen, Z., Zhou, S.: Behavior representation and simulation for military operations on urbanized terrain. Simulation 82(9), 593–607 (2006)

    Article  Google Scholar 

  36. Smith, R.: The long history of gaming in military training. Simul. Gaming 41(1), 6–19 (2010). https://doi.org/10.1177/1046878109334330

    Article  Google Scholar 

  37. Souissi, O., Benatitallah, R., Duvivier, D., Artiba, A., Belanger, N., Feyzeau, P.: Path planning: a 2013 survey. In: Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM), pp. 1–8. IEEE (2013)

    Google Scholar 

  38. Sturtevant, N.R.: Choosing a search space representation. Game AI Pro: Collected Wisdom Game AI Professionals 1, 253–258 (2013)

    Google Scholar 

  39. Susi, T., Johannesson, M., Backlund, P.: Serious games: An overview (IKI technical reports). skövde: Institutionen för kommunikation och information (2018). http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-1279

  40. Tolk, A.: Challenges of Distributed Simulation, chap. 11, pp. 185–208. John Wiley & Sons, Ltd (2012). https://doi.org/10.1002/9781118180310.ch11, https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118180310.ch11

  41. Unity-Technologies: Unity. https://unity3d.com

Download references

Acknowledgment

The authors thank to the Brazilian Army for the financial support through the SIS-ASTROS (813782/2014) and SIS-ASTROS GMF (898347/2020) projects, developed in the context of the PEE ASTROS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edison Pignaton de Freitas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pozzer, C.T. et al. (2023). SIS-ASTROS: An Integrated Simulation Environment for the Artillery Saturation Rocket System (ASTROS). In: Wagner, G., Werner, F., De Rango, F. (eds) Simulation and Modeling Methodologies, Technologies and Applications. SIMULTECH 2022. Lecture Notes in Networks and Systems, vol 780. Springer, Cham. https://doi.org/10.1007/978-3-031-43824-0_3

Download citation

Publish with us

Policies and ethics