Skip to main content

Plant‒Microbe Interaction in Developing Climate-Resilient Crop Species

  • Chapter
  • First Online:
New Frontiers in Plant-Environment Interactions

Abstract

Climate change is one of the most pressing challenges facing agriculture today, with its adverse effects on crop productivity and global food security. To combat the impacts of climate change, the development of climate-resilient crop species is crucial. Plant‒microbe interactions play a significant role in enhancing plant resilience to various stressors, including drought, heat, salinity, and pathogen attacks. This chapter explores the intricate relationship between plants and microbes and their potential role in developing climate-resilient crop species. It delves into the various mechanisms involved, highlighting the importance of harnessing these interactions for sustainable agriculture in the face of a changing climate.

These authors contributed equally to this book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul Malik NA, Kumar IS, Nadarajah K (2020) Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int J Mol Sci 21(3):963

    Article  CAS  Google Scholar 

  • Abegunde VO, Sibanda M, Obi A (2019) The dynamics of climate change adaptation in Sub-Saharan Africa: a review of climate-smart agriculture among small-scale farmers. Climate 7(11):132

    Article  Google Scholar 

  • Azadi H, Moghaddam SM, Burkart S, Mahmoudi H, Van Passel S, Kurban A, Lopez-Carr D (2021) Rethinking resilient agriculture: From climate-smart agriculture to vulnerable-smart agriculture. J Clean Prod 319:128602

    Article  Google Scholar 

  • Azizi S, Kouchaksaraei MT, Hadian J, Abad ARFN, Sanavi SAMM, Ammer C, Bader MKF (2021) Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle. For Ecol Manage 497:119478

    Article  Google Scholar 

  • Azizoglu U, Salehi Jouzani G, Sansinenea E, Sanchis-Borja V (2023) Biotechnological advances in Bacillus thuringiensis and its toxins: Recent updates. Rev Enviro Sci Bio/Technol, 1–30

    Google Scholar 

  • Bickford WA, Zak DR, Kowalski KP, Goldberg DE (2020) Differences in rhizosphere microbial communities between native and non-native Phragmites australis may depend on stand density. Ecol Evol 10(20):11739–11751

    Article  Google Scholar 

  • Bokhari A et al (2019) Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci Rep 9:18154

    Google Scholar 

  • Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T (2020) Communication of plants with microbial world: exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 238:126486

    Article  CAS  Google Scholar 

  • Chamkhi I, El Omari N, Balahbib A, El Menyiy N, Benali T, Ghoulam C (2022) Is—the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement? Saudi J Biological Sci 29(2):1246–1259

    Article  CAS  Google Scholar 

  • Das PP, Singh KR, Nagpure G, Mansoori A, Singh RP, Ghazi IA, Kumar A, Singh J (2022) Plant-soil-microbes: a tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ Res 214:113821

    Article  CAS  Google Scholar 

  • Duke SO (2021) Glyphosate: uses other than in glyphosate-resistant crops, mode of action, degradation in plants, and effects on non-target plants and agricultural microbes. Reviews of environmental contamination and toxicology, Vol 255: Glyphosate, pp 1–65

    Google Scholar 

  • Fahad S, Chavan SB, Chichaghare AR, Uthappa AR, Kumar M, Kakade V, Pradhan A, Jinger D, Rawale G, Yadav DK, Kumar V (2022) Agroforestry systems for soil health improvement and maintenance. Sustainability 14(22):14877

    Article  CAS  Google Scholar 

  • Fahad S, Sonmez O, Saud S, Wang D, Wu C, Adnan M, Turan V (eds) (2021) Developing climate-resilient crops: improving global food security and safety. CRC Press

    Google Scholar 

  • Hakim S, Naqqash T, Nawaz MS, Laraib I, Siddique MJ, Zia R, Mirza MS, Imran A (2021) Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers Sustain Food Syst 5:617157

    Article  Google Scholar 

  • Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT (2021) Climate change alters plant–herbivore interactions. New Phytol 229(4):1894–1910

    Article  CAS  Google Scholar 

  • Jacobs SR, Webber H, Niether W, Grahmann K, Lüttschwager D, Schwartz C, Breuer L, Bellingrath-Kimura SD (2022) Modification of the microclimate and water balance through the integration of trees into temperate cropping systems. Agric for Meteorol 323:109065

    Article  Google Scholar 

  • Kamle M, Borah R, Bora H, Jaiswal AK, Singh RK, Kumar P (2020) Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. Fungal biotechnology and bioengineering, pp457–470

    Google Scholar 

  • Khan MM, Akram MT, Qadri RWK, Al-Yahyai R (2020) Role of grapevine rootstocks in mitigating environmental stresses: a review. J Agric Marine Sci [JAMS] 25(2):1–12

    Article  Google Scholar 

  • Kogo BK, Kumar L, Koech R (2021) Climate change and variability in Kenya: a review of impacts on agriculture and food security. Environ Dev Sustain 23:23–43

    Article  Google Scholar 

  • Kumar J, Ramlal A, Mallick D, Mishra V (2021) An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants 10(6):1185

    Article  CAS  Google Scholar 

  • Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N, Huber L, Kudsk P, Langrell SR, Ratnadass A, Ricci P, Sarah JL (2015) Robust cropping systems to tackle pests under climate change. a review. Agron Sustain Develop 35:443–459

    Article  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White Jr JF (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276

    Google Scholar 

  • Lehmann P, Ammunét T, Barton M, Battisti A, Eigenbrode SD, Jepsen JU, Kalinkat G, Neuvonen S, Niemelä P, Terblanche JS, Økland B (2020) Complex responses of global insect pests to climate warming. Front Ecol Environ 18(3):141–150

    Article  Google Scholar 

  • Llorens E, González-Hernández AI, Scalschi L, Fernández-Crespo E, Camañes G, Vicedo B, García-Agustín P (2020) Priming mediated stress and cross-stress tolerance in plants: Concepts and opportunities. In: Priming-mediated stress and cross-stress tolerance in crop plants, pp. 1–20. Academic Press

    Google Scholar 

  • Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, Zehra A, Marwal A, Upadhyay RS (2020) PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. J Basic Microbiol 60(10):828–861

    Google Scholar 

  • Mehla MK (2023) Reducing reliance on chemical pesticides and promoting sustainable agriculture: role of integrated pest management strategies in horticulture. Shweta Sharma, p175

    Google Scholar 

  • Meurer K, Barron J, Chenu C, Coucheney E, Fielding M, Hallett P, Herrmann AM, Keller T, Koestel J, Larsbo M, Lewan E (2020) A framework for modelling soil structure dynamics induced by biological activity. Glob Change Biol 26(10):5382–5403

    Article  Google Scholar 

  • Nanjundappa A, Bagyaraj DJ, Saxena AK, Kumar M, Chakdar H (2019) Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol 6:1–10

    Article  Google Scholar 

  • Nephali L, Piater LA, Dubery IA, Patterson V, Huyser J, Burgess K, Tugizimana F (2020) Biostimulants for plant growth and mitigation of abiotic stresses: a metabolomics perspective. Metabolites 10(12):505

    Article  CAS  Google Scholar 

  • Neupane N, Paudel S, Sapkota R, Joshi YP, Rijal Y, Chalise A (2022) Enhancing the resilience of food production systems for food and nutritional security under climate change in Nepal. Frontiers Sustain Food Syst 6:968998

    Article  Google Scholar 

  • Nguyen TT, Grote U, Neubacher F, Do MH, Paudel GP (2023) Security risks from climate change and environmental degradation: implications for sustainable land use transformation in the Global South. Current Opin Environ Sustain 63:101322

    Article  Google Scholar 

  • Nwachukwu BC, Babalola OO (2021) Perspectives for sustainable agriculture from the microbiome in plant rhizosphere. Plant Biotechnology Reports 15(3):259–278

    Article  CAS  Google Scholar 

  • Pathan SI, Ceccherini MT, Sunseri F, Lupini A (2020) Rhizosphere as hotspot for plant-soil-microbe interaction. Carbon and Nitrogen Cycling in Soil, pp17–43

    Google Scholar 

  • Pattnaik SS, Paramanantham P, Busi S (2020) Agricultural importance of phyllosphere microbiome: recent trends and future perspectives. The plant microbiome in sustainable agriculture, pp119–139

    Google Scholar 

  • Phour M, Sindhu SS (2022) Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. Planta 256(5):85

    Article  CAS  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (eds) (2020) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier

    Google Scholar 

  • Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S (2019) Climate change has likely already affected global food production. PloS One 14:e0217148

    Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34

    Article  CAS  Google Scholar 

  • Schlossarek D, Zhang Y, Sokolowska EM, Fernie AR, Luzarowski M, Skirycz A (2023) Don’t let go: co-fractionation mass spectrometry for untargeted mapping of protein–metabolite interactomes. Plant J 113(5):904–914

    Article  CAS  Google Scholar 

  • Shahzad A, Ullah S, Dar AA, Sardar MF, Mehmood T, Tufail MA, Shakoor A, Haris M (2021) Nexus on climate change: agriculture and possible solution to cope future climate change stresses. Environ Sci Pollut Res 28:14211–14232

    Article  Google Scholar 

  • Sharma P, Bano A, Singh SP, Srivastava SK, Singh SP, Iqbal HM, Varjani S (2022) Different stages of microbial community during the anaerobic digestion of food waste. J Food Sci Technol, pp 1–13

    Google Scholar 

  • Song H, Kim KT, Park SY, Lee GW, Choi J, Jeon J, Cheong K, Choi G, Hur JS, Lee YH (2022) A comparative genomic analysis of lichen-forming fungi reveals new insights into fungal lifestyles. Sci Rep 12(1):10724

    Article  CAS  Google Scholar 

  • Tan C, Kalhoro MT, Faqir Y, Ma J, Osei MD, Khaliq G (2022) Climate-resilient microbial biotechnology: a perspective on sustainable agriculture. Sustainability 14(9):5574

    Article  CAS  Google Scholar 

  • Tiwari M, Pati D, Mohapatra R, Sahu BB, Singh P (2022) The impact of microbes in plant immunity and priming induced inheritance: a sustainable approach for crop protection. Plant Stress 4:100072

    Article  Google Scholar 

  • Varshney RK, Bohra A, Roorkiwal M, Barmukh R, Cowling WA, Chitikineni A, Lam HM, Hickey LT, Croser JS, Bayer PE, Edwards D (2021) Fast-forward breeding for a food-secure world. Trends Genet 37(12):1124–1136

    Article  CAS  Google Scholar 

  • Wang D, Saleh NB, Byro A, Zepp R, Sahle-Demessie E, Luxton TP, Ho KT, Burgess RM, Flury M, White JC, Su C (2022) Nano-enabled pesticides for sustainable agriculture and global food security. Nat Nanotechnol 17(4):347–360

    Article  CAS  Google Scholar 

  • Yan D, Tajima H, Cline LC, Fong RY, Ottaviani JI, Shapiro HY, Blumwald E (2022) Genetic modification of flavone biosynthesis in rice enhances biofilm formation of soil diazotrophic bacteria and biological nitrogen fixation. Plant Biotechnol J 20(11):2135–2148

    Article  CAS  Google Scholar 

  • Zvinavashe AT, Mardad I, Mhada M, Kouisni L, Marelli B (2021) Engineering the plant microenvironment to facilitate plant-growth-promoting microbe association. J Agric Food Chem 69(45):13270–13285

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Hayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayat, K. et al. (2023). Plant‒Microbe Interaction in Developing Climate-Resilient Crop Species. In: Aftab, T. (eds) New Frontiers in Plant-Environment Interactions. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-43729-8_20

Download citation

Publish with us

Policies and ethics