Skip to main content

Requirements for Web-Based 4D Visualisation of Integrated 3D City Models and Sensor Data in Urban Digital Twins

  • Conference paper
  • First Online:
Recent Advances in 3D Geoinformation Science (3DGeoInfo 2023)

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Included in the following conference series:

Abstract

Urban Digital Twins (UDTs) have emerged as essential tools for managing city operations, forming the basis of smart city solutions. They offer a digital representation of the physical urban environment, which supports various city applications such as monitoring mobility, air quality, and modelling simulations. To accurately represent the physical world, UDTs need to be updated continuously to reflect the changes in the urban environment on time. The Internet of Things (IoT) enables real-time data collection to capture these changes. Combined with 3D city models, IoT allows the interactive visualisation of patterns and trends in UDTs. In this study, we conduct investigations on the requirements for the web visualisation of semantic 3D city models enriched with time-dependent properties from IoT and simulation data. We explore the 3D models and IoT data integration requirements, 4D web visualisation design considerations, and the technical implementation requirements for rendering dynamic properties for UDTs applications. The paper also presents a workflow and a web viewer prototype for the 4D visualisation of integrated 3D models and dynamic data.

This article was selected based on the results of a double-blind review of the full paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://deck.gl/.

  2. 2.

    https://www.mdm-portal.de/.

  3. 3.

    https://www.datex2.eu/.

  4. 4.

    https://www.umweltbundesamt.de/api.

  5. 5.

    https://nodered.org/.

  6. 6.

    https://react.dev/.

  7. 7.

    https://resium.reearth.io/.

  8. 8.

    https://github.com/mqttjs/mqtt.js.

  9. 9.

    https://react-redux.js.org/.

References

  • Beil C, Ruhdorfer R, Coduro T, Kolbe TH (2020) Detailed streetspace modelling for multiple applications: discussions on the proposed CityGML 3.0 transportation model. IJGI 9(10):603. https://doi.org/10.3390/ijgi9100603

  • Beil C, Kendir M, Ruhdorfer R, Kolbe TH (2022) Dynamic and web-based 4D visualization of streetspace activities derived from traffic simulations and semantic 3D city models. ISPRS Ann Photogramm, Remote Sens Spatial Inform Sci, Copernicus GmbH, 29–36. https://doi.org/10.5194/isprs-annals-X-4-W2-2022-29-2022

  • Bertin J (1981) Graphics and graphic information-processing. de Gruyter

    Google Scholar 

  • Chaturvedi K (2021) Integration and management of time-dependent properties with semantic 3D city models. Doctoral dissertation, Technische Universität München [Online]. Available: https://mediatum.ub.tum.de/?id=1542959

  • Chaturvedi K, Kolbe TH (2018) InterSensor service: establishing interoperability over heterogeneous sensor observations and platforms for smart cities. In: 2018 IEEE International Smart Cities Conference (ISC2), Sep, pp 1–8. https://doi.org/10.1109/ISC2.2018.8656984

  • Chatzinikolaou E, Pispidikis I, Dimopoulou E (2020) A semantically enriched and web-based 3d energy model visualization and retrieval for smart building implementation using CityGML and Dynamizer ADE. ISPRS Annals Photogramm Remote Sens Spatial Inform Sci VI-4/W1:53–60. https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-53-2020

  • Cirillo F, Solmaz G, Berz EL, Bauer M, Cheng B, Kovacs E (2019) A standard-based open source IoT platform: FIWARE. IEEE Internet Things 2(3):12–18. https://doi.org/10.1109/IOTM.0001.1800022

    Article  Google Scholar 

  • Cozzi P, Lilley S, Getz G (2019) 3D tiles specification 1.0. Open Geospatial Consortium [Online]. Available: https://docs.ogc.org/cs/18-053r2/18-053r2.html

  • Döllner J, Buchholz H, Nienhaus M, Kirsch F (2005) Illustrative visualization of 3D city models. Presented at the Electronic Imaging 2005, Erbacher RF, Roberts JC, Grohn MT, Borner K (eds), San Jose, CA, p 42. https://doi.org/10.1117/12.587118

  • Döllner J, Baumann K, Buchholz H (2006) Virtual 3D city models as foundation of complex urban information spaces

    Google Scholar 

  • Ebrahim H, Santhanavanich T, Wuerstle P, Coors V (2021) Concept and evaluation of an urban platform for interactive visual analytics. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci VIII-4/W1:33–40. https://doi.org/10.5194/isprs-annals-VIII-4-W1-2021-33-2021

  • Ferré-Bigorra J, Casals M, Gangolells M (2022) The adoption of urban digital twins. Cities 131:103905. https://doi.org/10.1016/j.cities.2022.103905

    Article  Google Scholar 

  • Fischer M, Gras P, Löwa S, Schuhart S (2021) Urban data platform hamburg: integration von Echtzeit IoT-Daten mittels SensorThings API. In: ZFV—Zeitschrift fur Geodasie, Geoinformation und Landmanagement, vol 1, p 47. https://doi.org/10.12902/zfv-0330-2020

  • Gaigg M (2023) Designing map interfaces: patterns for building effective map apps, 1st edn. Esri Press, Redlands

    Google Scholar 

  • Gröger G, Kolbe TH, Nagel C, Häfele K-H (2012) OGC city geography markup language (CityGML) encoding standard

    Google Scholar 

  • Hardisty F, MacEachren A, Takatsuka M (2001) Cartographic animation in three dimensions: experimenting with the scene graph. Presented at the 20th International Cartographic Conference, Beijing, China: geovista.psu.edu [Online]. Available: https://icaci.org/files/documents/ICC_proceedings/ICC2001/icc2001/file/f17005.pdf

  • Kolbe TH (2009) ‘Representing and exchanging 3D city models with CityGML. In: Lee J, Zlatanova S (eds) 3D geo-information sciences. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 15–31. https://doi.org/10.1007/978-3-540-87395-2_2

  • Kutzner T, Chaturvedi K, Kolbe TH (2020) CityGML 3.0: new functions open up new applications. PFG 88(1):43–61. https://doi.org/10.1007/s41064-020-00095-z

    Article  Google Scholar 

  • Li B, Luo Z, Mao B (2022) Non-photorealistic visualization of 3D city models using visual variables in virtual reality environments. Procedia Comp Sci 214:1516–1521. https://doi.org/10.1016/j.procs.2022.11.338

    Article  Google Scholar 

  • Liang S, Huang C-Y, Khalafbeigi T (2016) OGC SensorThings API part 1: sensing

    Google Scholar 

  • Lopez PA et al (2019) Microscopic traffic simulation using SUMO. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Maui, USA: IEEE, pp 2575–2582. Accessed: May 2, 2023 [Online]. Available: https://www.itsc2019.org/

  • Mao B, Ban Y, Laumert B (2020) Dynamic online 3D visualization framework for real-time energy simulation based on 3D Tiles. ISPRS Int J Geo Inf 9(3):166. https://doi.org/10.3390/ijgi9030166

    Article  Google Scholar 

  • Rautenbach V, Coetzee S, Schiewe J, Cöltekin A (2015) An assessment of visual variables for the cartographic design of 3D informal settlement models. Presented at the 27th International Cartographic Conference, Rio de Janeiro, Brazil: Maps Connecting the World, Aug. https://doi.org/10.5167/UZH-117989

  • Reed C, Belayneh T (2022) OGC Indexed 3d Scene Layer (I3S) and scene layer package (*.slpk) format community standard. Open Geospatial Consortium. Accessed: Jul. 23, 2023 [Online]. Available: https://docs.ogc.org/cs/17-014r9/17-014r9.html

  • Santhanavanich T, Coors V (2021) CityThings: an integration of the dynamic sensor data to the 3D city model. Environment Planning B: Urban Analyt City Sci 48(3):417–432. https://doi.org/10.1177/2399808320983000

    Article  Google Scholar 

  • UN-Habitat (2022) World cities report 2022: envisaging the future of cities. United Nations Human Settlements Programme (UN-Habitat), Nairobi, Kenya [Online]. Available: https://unhabitat.org/sites/default/files/2022/06/wcr_2022.pdf

  • Wegener A, Piórkowski M, Raya M, Hellbrück H, Fischer S, Hubaux J-P (2008) TraCI: an interface for coupling road traffic and network simulators. In: Proceedings of the 11th communications and networking simulation symposium, in CNS ’08. New York, NY, USA: Association for Computing Machinery, Apr., pp 155–163. https://doi.org/10.1145/1400713.1400740

  • Yao Z et al (2018) 3DCityDB—a 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open Geospat Data, Soft Stand 3(1):5. https://doi.org/10.1186/s40965-018-0046-7

    Article  Google Scholar 

Download references

Acknowledgements

We thank the City of Munich for the cooperation in the Connected Urban Twins (CUT) project funded by the Federal Ministry for Housing, Urban Development and Building of Germany. We also thank the city's Geodata Service and Mobility departments for providing datasets used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Gitahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gitahi, J., Kolbe, T.H. (2024). Requirements for Web-Based 4D Visualisation of Integrated 3D City Models and Sensor Data in Urban Digital Twins. In: Kolbe, T.H., Donaubauer, A., Beil, C. (eds) Recent Advances in 3D Geoinformation Science. 3DGeoInfo 2023. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-031-43699-4_43

Download citation

Publish with us

Policies and ethics