Skip to main content

Optimizing Performance-Allocation Trade-Off: The Role of Human-Machine Interface Technology in Empowering Multi-skilled Workers in Industry 4.0 Factories

  • Conference paper
  • First Online:
Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures (APMS 2023)

Abstract

Companies today face growing demands for customization, necessitating the maintenance of high quality, low cost, and short lead times. Workload management plays a crucial role in achieving these objectives, and it primarily involves two forms: input control and output control. Existing literature has significantly focused on input control while often overlooking output control. This research focuses on the critical lever of workers’ flexibility as an essential output control element and investigates its impact on lead time performance. This research focuses on recognizing workers’ flexibility as a key competitive opportunity for companies, allowing them to cope effectively with temporary job demand imbalances. Companies can optimize direct labor utilization and production lead times by reallocating workers from underloaded stations to overloaded ones, thereby driving higher profit margins and customer satisfaction. To evaluate the benefits of increased flexibility, we employ discrete-event simulation techniques demonstrating a significant reduction in lead time. Additionally, we examine the impact of limiting workers’ movement across workstations. Surprisingly, These results demonstrate that, despite reducing the number of workers’ relocations, the advantages outweigh the negative effect on lead time. Companies can achieve optimal output control strategies that enhance their overall performance by improving the trade-off between lead time and the number of workers’ relocations. Overall, this research underscores the importance of output control in workload management and highlights workers’ flexibility as a critical lever to improve lead time performance. By adopting effective output control strategies, companies can efficiently align capacity and orders, enhancing operational performance and customer satisfaction. This study provides valuable insights into the dynamics of workload management and offers practical recommendations for manufacturing organizations seeking to optimize their processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Enrique, D.V., Druczkoski, J.C.M., Lima, T.M., Charrua-Santos, F.: Advantages and difficulties of implementing Industry 4.0 technologies for labor flexibility. Procedia Comput. Sci. 181, 347–352 (2021). https://doi.org/10.1016/j.procs.2021.03.130

  2. International Federation of Robotics. (2022). Positive Impact of Industrial Robots on Employment

    Google Scholar 

  3. Pasparakis, A., De Vries, J., De Koster, R.: Assessing the impact of human-robot collaborative order picking systems on warehouse workers. J. Oper. Manag. (2023), Advance online publication.https://doi.org/10.1080/00207543.2023.2183343

  4. Francas, D., Löhndorf, N., Minner, S.: Machine and labor flexibility in manufacturing networks.Int. J. Prod. Econ. (2011).https://doi.org/10.1016/j.ijpe.2010.03.014

  5. Costa, F., Kundu, K., Rossini, M., Portioli-Staudacher, A.: Comparative study of bottleneck-based release models and load-based ones in a hybrid MTO-MTS flow shop: an assessment by simulation. Oper. Manag. Res. 16(1), 33–48 (2023)

    Article  Google Scholar 

  6. Portioli-Staudacher, A., Costa, F., Thürer, M.: The use of labour flexibility for output control in workload controlled flow shops: a simulation analysis. In: Proceedings of the 16th International Conference on Factory Communication Systems, vol. 12543, pp. 429–442 (2020). https://doi.org/10.5267/j.ijiec.2019.11.004

  7. Costa, F., Portioli-Staudacher, A.: Labor flexibility integration in workload control in Industry 4.0 era. Oper. Manag. Res. 14(3–4), 420–433 (2021). https://doi.org/10.1007/s12063-021-00184-6

  8. Askar, G., Sillekens, T., Suhl, L., Zimmermann, J.: Flexibility planning in automotive plants. In: Günther, H.-O., Mattfeld, D.C., Suhl, L. (eds.) Management Logistischer Netzwerke, pp. 235–255. Physica, Heidelberg (2007). https://doi.org/10.1007/978-3-7908-1916-9_14

  9. Thürer, M., Zhang, H., Stevenson, M., Costa, F., Ma, L.: Worker assignment in dual resource constrained assembly job shops with worker heterogeneity: an assessment by simulation. In: Dornberger, R., Jung, R., Steinmetz, R. (Eds.) Proceedings of the 16th International Conference on Factory Communication Systems, pp. 6336–6349. Springer Lecture Notes in Computer Science, vol. 12543 (2020). https://doi.org/10.1007/978-3-030-55184-2_492

  10. Kher, H., Malhotra, M.: Acquiring and operationalizing worker flexibility in dual resource constrained job shops with worker transfer delays and learning losses. Omega 22, 521–533 (1994). https://doi.org/10.1016/0305-0483(94)90032-9

    Article  Google Scholar 

  11. Malhotra, M.K., Narasimhan, R., Giri, B.C.: The impact of learning and labor attrition on worker flexibility in dual resource constrained job shops. Decis. Sci. 24, 641–664 (1993). https://doi.org/10.1111/j.1540-5915.1993.tb01296.x

    Article  Google Scholar 

  12. Kingsman, B., Hendry, L.: The relative contributions of input and output controls on the performance of a workload control system in make-to-order companies. Prod. Plann. Control. 13, 579–590 (2002). https://doi.org/10.1080/0953728021000026285

    Article  Google Scholar 

  13. Thürer, M.J., Land, M., Stevenson, M., Fredendall, L.D.: On the integration of due date setting and order release control. Prod. Plann. Control. 28, 420–430 (2017). https://doi.org/10.1080/09537287.2017.1302102

    Article  Google Scholar 

  14. Huang, Y.: Information architecture for effective workload control: an insight from a successful implementation. Prod. Plann. Control. 28, 351–366 (2017). https://doi.org/10.1080/09537287.2017.1288278

    Article  Google Scholar 

  15. Gupta, S., Jain, S.K.: A literature review of lean manufacturing. Int. J. Manag. Sci. Eng. Manag. 8, 241–249 (2013). https://doi.org/10.1080/17509653.2013.825074

    Article  Google Scholar 

  16. Sammarco, M., Fruggiero, F., Neumann, W.P., Lambiase, A.: Agent-based modeling of movement rules in DRC systems for volume flexibility: human factors and technical performance. Int. J. Prod. Res. 52(3), 633–650 (2014). https://doi.org/10.1080/00207543.2013.807952

    Article  Google Scholar 

  17. Araz, Ö.U., Salum, L.: A multi-criteria adaptive control scheme based on neural networks and fuzzy inference for DRC manufacturing systems. Int. J. Prod. Res. 48(1), 251–270 (2010). https://doi.org/10.1080/00207540802471256

    Article  MATH  Google Scholar 

  18. Małachowski, B., Korytkowski, P.: Competence-based performance model of multi-skilled workers. Comput. Ind. Eng. 91, 165–177 (2016). https://doi.org/10.1016/j.cie.2015.11.018

    Article  Google Scholar 

  19. Boysen, N., Fliedner, M., Scholl, A., Bock, S.: A classification of assembly line balancing problems. Jenaer Schriften zur Wirtschaftswissenschaft (2006). Available at: https://pdfs.semanticscholar.org/c9c5/1dd66ddf14b0a0af0fa62e86ff49fb2dac5d.pdf

  20. Wang, X.V., Wang, L.: Augmented reality enabled human–robot collaboration. Adv. Human-Robot Collaboration Manuf. 395–411(2021). https://doi.org/10.1007/978-3-030-69178-3_16

  21. Esengün, M., Üstündağ, A., İnce, G.: Development of an augmented reality-based process management system: the case of a natural gas power plant. IISE Trans. 55, 201–216 (2023). https://doi.org/10.1080/24725854.2022.2034195

    Article  Google Scholar 

  22. Moreira, M.R.A., Alves, R.A.F.S.: Input-output control order release mechanism in a job-shop: how workload control improves manufacturing operations. Int. J. Comput. Sci. Eng. 7(3), 214–223 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, F., Ahmadi, A., Portioli-Staudacher, A. (2023). Optimizing Performance-Allocation Trade-Off: The Role of Human-Machine Interface Technology in Empowering Multi-skilled Workers in Industry 4.0 Factories. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures. APMS 2023. IFIP Advances in Information and Communication Technology, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-031-43662-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43662-8_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43661-1

  • Online ISBN: 978-3-031-43662-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics