Skip to main content

Deterministic Weighted Automata Under Partial Observability

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

Weighted automata is a basic tool for specification in quantitative verification, which allows to express quantitative features of analysed systems such as resource consumption. Quantitative specification can be assisted by automata learning as there are classic results on Angluin-style learning of weighted automata. The existing work assumes perfect information about the values returned by the target weighted automaton. In assisted synthesis of a quantitative specification, knowledge of the exact values is a strong assumption and may be infeasible. In our work, we address this issue by introducing a new framework of partially-observable deterministic weighted automata, in which weighted automata return intervals containing the computed values of words instead of the exact values. We study the basic properties of this framework with the particular focus on the challenges of active learning partially-observable deterministic weighted automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning functions represented as multiplicity automata. J. ACM 47(3), 506–530 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blackburn, P., van Benthem, J.F., Wolter, F. (eds.): Handbook of Modal Logic. Elsevier, Amsterdam (2006)

    Google Scholar 

  4. Blondin, M., Finkel, A., Göller, S., Haase, C., McKenzie, P.: Reachability in two-dimensional vector addition systems with states is PSPACE-complete. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, pp. 32–43. IEEE Computer Society (2015)

    Google Scholar 

  5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comput. Log. 11(4), 23:1–23:38 (2010)

    Google Scholar 

  6. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. ACM Trans. Comput. Log. 18(4), 31:1–31:44 (2017)

    Google Scholar 

  7. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking, vol. 10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

  8. Doyen, L., Raskin, J.F.: Games with imperfect information: theory and algorithms. In: Apt, K.R., Grädel, E. (eds.), Lectures in Game Theory for Computer Scientists, pp. 185–212. Cambridge University Press (2011)

    Google Scholar 

  9. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer Science & Business Media, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5

  10. Guelev, D.P., Dima, C.: Epistemic ATL with perfect recall, past and strategy contexts. In: Fisher, M., van der Torre, L., Dastani, M., Governatori, G. (eds.) CLIMA 2012. LNCS (LNAI), vol. 7486, pp. 77–93. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32897-8_7

    Chapter  Google Scholar 

  11. Henzinger, T.A., Otop, J.: From model checking to model measuring. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 273–287. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40184-8_20

    Chapter  Google Scholar 

  12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Adison-Wesley Publishing Company, Reading, Massachusets, USA (1979)

    MATH  Google Scholar 

  13. Hunter, P., Raskin, J.-F.: Quantitative games with interval objectives. In: Raman, V., Suresh, S.P. (eds.), 34th International Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014, volume 29 of LIPIcs, pp. 365–377. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)

    Google Scholar 

  14. Marusic, I., Worrell, J.: Complexity of equivalence and learning for multiplicity tree automata. J. Mach. Learn. Res. 16, 2465–2500 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Michaliszyn, J., Otop, J.: Minimization of limit-average automata. In: Zhou, Z.-H. (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event/Montreal, Canada, 19–27 August 2021, pp. 2819–2825. ijcai.org (2021)

    Google Scholar 

  16. Michaliszyn, J., Otop, J.: Learning infinite-word automata with loop-index queries. Artif. Intell. 307, 103710 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Millington, I.: AI for Games. CRC Press, Boca Raton (2019)

    Google Scholar 

  18. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes. Math. Oper. Res. 12(3), 441–450 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre (NCN), Poland under grant 2020/39/B/ST6/00521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Otop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Michaliszyn, J., Otop, J. (2023). Deterministic Weighted Automata Under Partial Observability. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics