Skip to main content

Predictive Maintenance, Adversarial Autoencoders and Explainability

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track (ECML PKDD 2023)

Abstract

The transition to Industry 4.0 provoked a transformation of industrial manufacturing with a significant leap in automation and intelligent systems. This paradigm shift has brought about a mindset that emphasizes predictive maintenance: detecting future failures when current behaviour of industrial processes and machines is thought to be normal. The constant monitoring of industrial equipment produces massive quantities of data that enables the application of machine learning approaches to this task. This study uses deep learning-based models to build a data-driven predictive maintenance framework for the air production unit (APU), a crucial system for the proper functioning of a Metro do Porto train. This public transport system moves thousands of people every day and train failures lead to delays and loss of trust by clients. Therefore, it is essential not only to detect APU failures before they occur to minimize negative impacts, but also to provide explanations for the failure warnings that can aid in decision-making processes. We propose an autoencoder architecture trained with an adversarial loss, known as the Wasserstein Autoencoder with Generative Adversarial Network (WAE-GAN), designed to detect sensor failures in systems connected to the APU. Our model can detect APU failures up to two hours before they occur, allowing timely intervention of the maintenance teams. We further augment our model with an explainability layer, by providing explanations generated by a rule-based model that focuses on rare events. Results show that our model is able to detect APU failures without any false alarms, fulfilling the requisites of Metro do Porto for early detection of the failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aminian, E., Ribeiro, R.P., Gama, J.: Chebyshev approaches for imbalanced data streams regression models. Data Min. Knowl. Disc. 35(6), 2389–2466 (2021). https://doi.org/10.1007/s10618-021-00793-1

    Article  MathSciNet  MATH  Google Scholar 

  2. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  3. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  4. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory networks. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–7. IEEE (2015)

    Google Scholar 

  5. Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-series data: review, analysis, and guidelines. IEEE Access 9, 120043–120065 (2021). https://doi.org/10.1109/ACCESS.2021.3107975

    Article  Google Scholar 

  6. Darban, Z.Z., Webb, G.I., Pan, S., Aggarwal, C.C., Salehi, M.: Deep learning for time series anomaly detection: a survey (2022). https://doi.org/10.48550/arXiv.2211.05244

  7. Davari, N., Veloso, B., Ribeiro, R.P., Gama, J.: Fault forecasting using data-driven modeling: a case study for metro do Porto data set. In: Koprinska, I., et al. (eds.) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol. 1753, pp. 400–409. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23633-4_26

  8. Davari, N., Veloso, B., Ribeiro, R.P., Pereira, P.M., Gama, J.: Predictive maintenance based on anomaly detection using deep learning for air production unit in the railway industry. In: 2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10 (2021). https://doi.org/10.1109/DSAA53316.2021.9564181

  9. Duarte, J., Gama, J., Bifet, A.: Adaptive model rules from high-speed data streams. ACM Trans. Knowl. Disc. Data (TKDD) 10(3), 1–22 (2016)

    Article  Google Scholar 

  10. Essien, A., Giannetti, C.: A deep learning model for smart manufacturing using convolutional LSTM neural network autoencoders. IEEE Trans. Industr. Inf. 16(9), 6069–6078 (2020). https://doi.org/10.1109/TII.2020.2967556

    Article  Google Scholar 

  11. Geiger, A., Liu, D., Alnegheimish, S., Cuesta-Infante, A., Veeramachaneni, K.: TadGAN: time series anomaly detection using generative adversarial networks. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 33–43. IEEE (2020)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  16. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56

    Chapter  Google Scholar 

  17. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  18. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: Lstm-based encoder-decoder for multi-sensor anomaly detection (2016). https://doi.org/10.48550/arXiv.1607.00148

  19. Mobley, R.K.: An introduction to predictive maintenance. Elsevier (2002)

    Google Scholar 

  20. Ng, A., et al.: Sparse autoencoder. CS294A Lect. Notes. 72(2011), 1–19 (2011)

    Google Scholar 

  21. Nguyen, H.D., Tran, K.P., Thomassey, S., Hamad, M.: Forecasting and anomaly detection approaches using LSTM and LSTM autoencoder techniques with the applications in supply chain management. Int. J. Inf. Manage. 57, 102282 (2021). https://doi.org/10.1016/j.ijinfomgt.2020.102282

    Article  Google Scholar 

  22. Oord, A., et al.: WaveNet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  23. Ribeiro, R.P., Mastelini, S.M., Davari, N., Aminian, E., Veloso, B., Gama, J.: Online anomaly explanation: a case study on predictive maintenance. In: Koprinska, I., et al. (eds.) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol. 1753, pp. 383–399. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-23633-4_25

  24. Ribeiro, R.P., Pereira, P., Gama, J.: Sequential anomalies: a study in the railway industry. Mach. Learn. 105, 127–153 (2016)

    Article  MathSciNet  Google Scholar 

  25. Sachs, J., Kroll, C., Lafortune, G., Fuller, G., Woelm, F.: Sustainable Development Report 2022. Cambridge University Press, Cambridge (2022)

    Google Scholar 

  26. Said Elsayed, M., Le-Khac, N.A., Dev, S., Jurcut, A.D.: Network anomaly detection using LSTM based autoencoder. In: Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, pp. 37–45 (2020). https://doi.org/10.1145/3416013.3426457

  27. Samal, K.K.R., Babu, K.S., Das, S.K.: Temporal convolutional denoising autoencoder network for air pollution prediction with missing values. Urban Clim. 38, 100872 (2021)

    Article  Google Scholar 

  28. Serradilla, O., Zugasti, E., Rodriguez, J., Zurutuza, U.: Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects. Appl. Intell. 52(10), 10934–10964 (2022)

    Article  Google Scholar 

  29. Thill, M., Konen, W., Wang, H., Bäck, T.: Temporal convolutional autoencoder for unsupervised anomaly detection in time series. Appl. Soft Comput. 112, 107751 (2021)

    Article  Google Scholar 

  30. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders. arXiv preprint arXiv:1711.01558 (2017)

  31. Tukey, J.W., et al.: Exploratory Data Analysis, vol. 2. Reading, MA (1977)

    MATH  Google Scholar 

  32. Veloso, B., Gama, J., Ribeiro, R., Pereira, P.: MetroPT2: A Benchmark dataset for predictive maintenance, July 2022. https://doi.org/10.5281/zenodo.7766691

  33. Veloso, B., Ribeiro, R.P., Gama, J., Pereira, P.M.: The metropt dataset for predictive maintenance. Sci. Data 9(1), 764 (2022). https://doi.org/10.1038/s41597-022-01877-3

    Article  Google Scholar 

  34. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  35. Xu, J., Duraisamy, K.: Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics. Comput. Methods Appl. Mech. Eng. 372, 113379 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  37. Zonta, T., Da Costa, C.A., da Rosa Righi, R., de Lima, M.J., da Trindade, E.S., Li, G.P.: Predictive maintenance in the industry 4.0: a systematic literature review. Comput. Indus. Eng. 150, 106889 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Miguel E. P. Silva is financed by National Funds through the Portuguese funding agency, FCT - within project UIDP/50014/2020. João Gama is financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 952026 (HumanE-AI-Net project). We also would like to acknowledge CHIST-ERA-19-XAI-012 and CHIST-ERA/0004/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel E. P. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, M.E.P., Veloso, B., Gama, J. (2023). Predictive Maintenance, Adversarial Autoencoders and Explainability. In: De Francisci Morales, G., Perlich, C., Ruchansky, N., Kourtellis, N., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14175. Springer, Cham. https://doi.org/10.1007/978-3-031-43430-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43430-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43429-7

  • Online ISBN: 978-3-031-43430-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics