Skip to main content

Skeletal Cores and Graph Resilience

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14171))

  • 817 Accesses

Abstract

In network analysis, one of the most important structures is the k-core: the maximal set of nodes such that each node in the k-core has at least k neighbors within the core. Recently, the notion of the skeletal k-core– a minimal subgraph that preserves the core structure of the graph– has attracted attention. However, the literature to date has contained only a biased greedy heuristic for sampling skeletal cores, which resulted in a skewed analysis of the network. In this work, we introduce a novel MCMC algorithm for sampling skeletal cores uniformly at random, as well as a novel algorithm for estimating the size of the space of skeletal k-cores, which, as we show, is important for understanding the core resilience of the network. With these algorithms, we demonstrate the relationship between resilience of the network and the core structure of the graph and suggest fast heuristics for evaluating graph structure from a skeletal cores perspective. We show that the normalized number of skeletal cores in the graph correlates with the resilience of k-core towards edge deletion attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this sometimes overestimates the desired value, as loss of an edge (uv) can trigger reductions in core numbers of other nodes, and thus lower the core number of other neighbors of u; however, computing the exact value is more computationally intensive.

  2. 2.

    Experimentally this bound proved to be very loose, which may reduce the rate of convergence.

  3. 3.

    Extended version and source code are available at https://github.com/honcharov-danylo/extended_skeletal.

  4. 4.

    Such convergence diagnostics for MCMC methods don‘t guarantee convergence, and should be seen as a type of statistical analysis [6].

References

  1. Adiga, A., Vullikanti, A.K.S.: How robust is the core of a network? In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8188, pp. 541–556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_35

    Chapter  Google Scholar 

  2. Altaf-Ul-Amine, M., et al.: Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences. Genome Inform. 14, 498–499 (2003)

    Google Scholar 

  3. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: k-core decomposition: a tool for the visualization of large scale networks. arXiv preprint cs/0504107 (2005)

    Google Scholar 

  4. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003)

    Google Scholar 

  5. Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social networks: the anchored k-core problem. SIAM J. Discret. Math. 29(3), 1452–1475 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brooks, S.P., Roberts, G.O.: Assessing convergence of Markov chain Monte Carlo algorithms. Stat. Comput. 8(4), 319–335 (1998)

    Article  Google Scholar 

  7. Cohen, J.: Trusses: cohesive subgraphs for social network analysis. National security agency technical report 16.3.1 (2008)

    Google Scholar 

  8. Ellens, W., Kooij, R.E.: Graph measures and network robustness. arXiv preprint arXiv:1311.5064 (2013)

  9. Erdős, P., Rényi, A., et al.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60 (1960)

    MathSciNet  MATH  Google Scholar 

  10. Freitas, S., et al.: Graph vulnerability and robustness: a survey. IEEE Trans. Knowl. Data Eng. 35(6), 5915–5934 (2022)

    Google Scholar 

  11. Al-garadi, M.A., Varathan, K.D., Ravana, S.D.: Identification of influential spreaders in online social networks using interaction weighted k-core decomposition method. Physica A: Stat. Mech. Appl. 468, 278–288 (2017)

    Article  Google Scholar 

  12. Govindan, P., Wang, C., Xu, C., Duan, H., Soundarajan, S.: The k-peak decomposition: mapping the global structure of graphs. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1441–1450 (2017)

    Google Scholar 

  13. Iwata, M., Sasa, S.: Dynamics of k-core percolation in a random graph. J. Phys. A Math. Theor. 42(7), 075005 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)

    Article  MATH  Google Scholar 

  15. Knuth, D.E.: Estimating the efficiency of backtrack programs. Math. Comput. 29(129), 122–136 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Laishram, R., Soundarajan, S.: On finding and analyzing the backbone of the k-core structure of a graph. In: 2022 IEEE International Conference on Data Mining (ICDM), pp. 1017–1022. IEEE (2022)

    Google Scholar 

  17. Laishram, R., et al.: Measuring and improving the core resilience of networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 609–618 (2018)

    Google Scholar 

  18. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  19. Malvestio, I., Cardillo, A., Masuda, N.: Interplay between \(k\)-core and community structure in complex networks. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  20. Medya, S., Ma, T., Silva, A., Singh, A.: A game theoretic approach for core resilience. In: International Joint Conferences on Artificial Intelligence Organization (2020)

    Google Scholar 

  21. Mokken, R.J., et al.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)

    Article  Google Scholar 

  22. Peng, C., Kolda, T.G., Pinar, A.: Accelerating community detection by using k-core subgraphs. arXiv preprint arXiv:1403.2226 (2014)

  23. Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giantk-core in a random graph. J. Comb. Theory Ser. B 67(1), 111–151 (1996)

    Article  MATH  Google Scholar 

  24. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  25. Serafino, M., et al.: Superspreading k-cores at the center of COVID-19 pandemic persistence. medRxiv (2020)

    Google Scholar 

  26. Shin, K., Eliassi-Rad, T., Faloutsos, C.: Corescope: graph mining using k-core analysis–patterns, anomalies and algorithms. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 469–478. IEEE (2016)

    Google Scholar 

  27. Zhang, H., Zhao, H., Cai, W., Liu, J., Zhou, W.: Using the k-core decomposition to analyze the static structure of large-scale software systems. J. Supercomput. 53, 352–369 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Honcharov and Soundarajan were supported by NSF Award #1908048. Sarıyüce was supported by NSF Award #1910063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danylo Honcharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Honcharov, D., Sarıyüce, A.E., Laishram, R., Soundarajan, S. (2023). Skeletal Cores and Graph Resilience. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14171. Springer, Cham. https://doi.org/10.1007/978-3-031-43418-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43418-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43417-4

  • Online ISBN: 978-3-031-43418-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics