Skip to main content

Quantifying Node-Based Core Resilience

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

Core decomposition is an efficient building block for various graph analysis tasks such as dense subgraph discovery and identifying influential nodes. One crucial weakness of the core decomposition is its sensitivity to changes in the graph: inserting or removing a few edges can drastically change the core structure of a graph. Hence, it is essential to characterize, quantify, and, if possible, improve the resilience of the core structure of a given graph in global and local levels. Previous works mostly considered the core resilience of the entire graph or important subgraphs in it. In this work, we study node-based core resilience measures upon edge removals and insertions. We first show that a previously proposed measure, Core Strength, does not correctly capture the core resilience of a node upon edge removals. Next, we introduce the concept of dependency graph to capture the impact of neighbor nodes (for edge removal) and probable future neighbor nodes (for edge insertion) on the core number of a given node. Accordingly, we define Removal Strength and Insertion Strength measures to capture the resilience of an individual node upon removing and inserting an edge, respectively. As naive computation of those measures is costly, we provide efficient heuristics built on key observations about the core structure. We consider two key applications, finding critical edges and identifying influential spreaders, to demonstrate the usefulness of our new measures on various real-world networks and against several baselines. We also show that our heuristic algorithms are more efficient than the naive approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://snap.stanford.edu/.

  2. 2.

    http://networkrepository.com/.

  3. 3.

    https://github.com/erdemUB/ECMLPKDD23.

  4. 4.

    https://ubir.buffalo.edu/xmlui/handle/10477/79221.

References

  1. Adiga, A., Vullikanti, A.K.S.: How robust is the core of a network? In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8188, pp. 541–556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_35

    Chapter  Google Scholar 

  2. Altaf-Ul-Amine, M., et al.: Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences. Genome Inf. 14, 498–499 (2003)

    Google Scholar 

  3. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 25–37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95995-3_3

    Chapter  Google Scholar 

  4. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  5. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 65–74 (2011)

    Google Scholar 

  6. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: the maximum k-plex problem. Oper. Res. 59(1), 133–142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of networks. corr. arXiv preprint cs.DS/0310049 37 (2003)

    Google Scholar 

  8. Batagelj, V., Zaversnik, M.: Fast algorithms for determining (generalized) core groups in social networks. Adv. Data Anal. Classif. 5(2), 129–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social networks: the anchored k-core problem. SIAM J. Disc. Math. 29(3), 1452–1475 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burleson-Lesser, K., Morone, F., Tomassone, M.S., Makse, H.A.: K-core robustness in ecological and financial networks. Sci. Rep. 10(1), 1–14 (2020)

    Article  Google Scholar 

  11. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. 104(27), 11150–11154 (2007)

    Article  Google Scholar 

  12. Castellano, C., Pastor-Satorras, R.: Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 105(21), 218701 (2010)

    Article  Google Scholar 

  13. Chen, D., Lü, L., Shang, M.S., Zhang, Y.C., Zhou, T.: Identifying influential nodes in complex networks. Physica A: Stat. Mech. Appl. 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  14. Dey, P., Maity, S.K., Medya, S., Silva, A.: Network robustness via global k-cores. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pp. 438–446 (2021)

    Google Scholar 

  15. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev. 29(4), 251–262 (1999)

    Article  MATH  Google Scholar 

  16. Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: D-cores: measuring collaboration of directed graphs based on degeneracy. Knowl. Inf. Syst. 35(2), 311–343 (2013)

    Article  Google Scholar 

  17. Goltsev, A.V., Dorogovtsev, S.N., Mendes, J.F.F.: k-core (bootstrap) percolation on complex networks: critical phenomena and nonlocal effects. Phys. Rev. E 73(5), 056101 (2006)

    Article  MathSciNet  Google Scholar 

  18. Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. ACM Sigmod Rec. 42(2), 17–28 (2013)

    Article  Google Scholar 

  19. Hossain, J., Soundarajan, S., Sarıyüce, A.E.: Quantifying node-based core resilience. arXiv preprint arXiv:2306.12038 (2023)

  20. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  21. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algor. 17(2), 222–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laishram, R., Sariyüce, A.E., Eliassi-Rad, T., Pinar, A., Soundarajan, S.: Measuring and improving the core resilience of networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 609–618 (2018)

    Google Scholar 

  23. Laishram, R., Sariyuce, A.E., Eliassi-Rad, T., Pinar, A., Soundarajan, S.: Residual core maximization: an efficient algorithm for maximizing the size of the k-core. In: Proceedings of the 2020 SIAM International Conference on Data Mining, pp. 325–333. SIAM (2020)

    Google Scholar 

  24. Lewis, T.G.: The many faces of resilience. Commun. ACM 66(1), 56–61 (2022)

    Article  Google Scholar 

  25. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 556–559 (2003)

    Google Scholar 

  26. Lin, J.H., Guo, Q., Dong, W.Z., Tang, L.Y., Liu, J.G.: Identifying the node spreading influence with largest k-core values. Phys. Lett. A 378(45), 3279–3284 (2014)

    Article  MATH  Google Scholar 

  27. Liu, C., Zhang, Z.K.: Information spreading on dynamic social networks. Commun. Nonlinear Sci. Numer. Simul. 19(4), 896–904 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Medo, M., Zhang, Y.C., Zhou, T.: Adaptive model for recommendation of news. EPL (Europhys. Lett.) 88(3), 38005 (2009)

    Article  Google Scholar 

  29. Medya, S., Ma, T., Silva, A., Singh, A.: A game theoretic approach for core resilience. In: International Joint Conferences on Artificial Intelligence Organization (2020)

    Google Scholar 

  30. Newman, M.E.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)

    Article  Google Scholar 

  31. Purevsuren, D., Cui, G.: Efficient heuristic algorithm for identifying critical nodes in planar networks. Comput. Oper. Res. 106, 143–153 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sariyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: Streaming algorithms for k-core decomposition. Proc. VLDB Endow. 6(6), 433–444 (2013)

    Article  Google Scholar 

  33. Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: Incremental k-core decomposition: algorithms and evaluation. VLDB J. 25(3), 425–447 (2016)

    Article  Google Scholar 

  34. Schaeffer, S.E., Valdés, V., Figols, J., Bachmann, I., Morales, F., Bustos-Jiménez, J.: Characterization of robustness and resilience in graphs: a mini-review. J. Complex Netw. 9(2), cnab018 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schwab, D.J., Bruinsma, R.F., Feldman, J.L., Levine, A.J.: Rhythmogenic neuronal networks, emergent leaders, and k-cores. Phys. Rev. E 82(5), 051911 (2010)

    Article  Google Scholar 

  36. Seidman, S.B.: Network structure and minimum degree. Social Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  37. Sharkey, K.J.: Deterministic epidemic models on contact networks: correlations and unbiological terms. Theor. Popul. Biol. 79(4), 115–129 (2011)

    Article  MATH  Google Scholar 

  38. Sun, X., Huang, X., Jin, D.: Fast algorithms for core maximization on large graphs. Proc. VLDB Endow. 15(7), 1350–1362 (2022)

    Article  Google Scholar 

  39. Wang, M., Li, W., Guo, Y., Peng, X., Li, Y.: Identifying influential spreaders in complex networks based on improved k-shell method. Physica A: Stat. Mech. Appl. 554, 124229 (2020)

    Article  MATH  Google Scholar 

  40. Zareie, A., Sheikhahmadi, A.: A hierarchical approach for influential node ranking in complex social networks. Expert Syst. Appl. 93, 200–211 (2018)

    Article  Google Scholar 

  41. Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an efficient algorithm to prevent unraveling in social networks. Proc. VLDB Endow. 10(6), 649–660 (2017)

    Article  Google Scholar 

  42. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical users for social network engagement: the collapsed k-core problem. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  43. Zhao, K., Zhang, Z., Rong, Y., Yu, J.X., Huang, J.: Finding critical users in social communities via graph convolutions. IEEE Trans. Knowl. Data Eng. 35(1), 456–468 (2023)

    Google Scholar 

  44. Zhou, B., Lv, Y., Mao, Y., Wang, J., Yu, S., Xuan, Q.: The robustness of graph k-shell structure under adversarial attacks. IEEE Trans. Circ. Syst. II: Express Briefs 69(3), 1797–1801 (2021)

    Google Scholar 

  45. Zhou, Z., Zhang, F., Lin, X., Zhang, W., Chen, C.: K-core maximization: an edge addition approach. In: IJCAI, pp. 4867–4873 (2019)

    Google Scholar 

  46. Zhu, W., Chen, C., Wang, X., Lin, X.: K-core minimization: an edge manipulation approach. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1667–1670 (2018)

    Google Scholar 

Download references

Acknowledgments

Hossain and Sarıyüce were supported by NSF Award #1910063 and used resources of the Center for Computational Research at the University at Buffalo. Soundarajan was supported by NSF Award #1908048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakir Hossain .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Statement

Our contribution is algorithmic in nature, building on previously proposed concepts. We work on public datasets. We do not foresee any ethical implications of our work.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hossain, J., Soundarajan, S., Sarıyüce, A.E. (2023). Quantifying Node-Based Core Resilience. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14171. Springer, Cham. https://doi.org/10.1007/978-3-031-43418-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43418-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43417-4

  • Online ISBN: 978-3-031-43418-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics