Skip to main content

Posterior Consistency for Missing Data in Variational Autoencoders

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

We consider the problem of learning Variational Autoencoders (VAEs), i.e., a type of deep generative model, from data with missing values. Such data is omnipresent in real-world applications of machine learning because complete data is often impossible or too costly to obtain. We particularly focus on improving a VAE’s amortized posterior inference, i.e., the encoder, which in the case of missing data can be susceptible to learning inconsistent posterior distributions regarding the missingness. To this end, we provide a formal definition of posterior consistency and propose an approach for regularizing an encoder’s posterior distribution which promotes this consistency. We observe that the proposed regularization suggests a different training objective than that typically considered in the literature when facing missing values. Furthermore, we empirically demonstrate that our regularization leads to improved performance in missing value settings in terms of reconstruction quality and downstream tasks utilizing uncertainty in the latent space. This improved performance can be observed for many classes of VAEs including VAEs equipped with normalizing flows.

This work was funded in parts by the Federal Ministry of Education, Science and Research (BMBWF), Austria [Digitize! Computational Social Science in the Digital and Social Transformation].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/stschia/VAE-posterior-consistency.git.

References

  1. Allen, A., Li, W.: Generative adversarial denoising autoencoder for face completion (2016). www.cc.gatech.edu/hays/7476/projects/Avery_Wenchen/

  2. Berchtold, A.: Treatment and reporting of item-level missing data in social science research. vol. 22, pp. 431–439. Routledge (2019). https://doi.org/10.1080/13645579.2018.1563978

  3. Burda, Y., Grosse, R.B., Salakhutdinov, R.: Importance Weighted Autoencoders. In: International Conference on Learning Representations (ICLR) (2016), arxiv.org/abs/1509.00519

  4. van Buuren, S., Groothuis-Oudshoorn, K.: mice: Multivariate imputation by chained equations in r. vol. 45, pp. 1–67. Foundation for Open Access Statistics (2011)

    Google Scholar 

  5. Cheng-Xian Li, S., Jiang, B., Marlin, B.: MisGAN: Learning from Incomplete Data with Generative Adversarial Networks. In: International Conference on Learning Representations (ICLR) (2019), arxiv.org:1902.09599

  6. Collier, M., Nazabal, A., Williams, C.: VAEs in the presence of missing data. In: ICML Workshop on the Art of Learning with Missing Values (Artemiss) (2020). www.openreview.net/forum?id=PnZT5EWoB7

  7. Cremer, C., Li, X., Duvenaud, D.: Inference suboptimality in variational autoencoders. In: International Conference on Machine Learning (ICML), pp. 1078–1086. PMLR (2018)

    Google Scholar 

  8. Denton, E.L., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems (NeurIPS). Curran Associates, Inc. (2015). www.proceedings.neurips.cc/paper/2015/file/aa169b49b583a2b5af89203c2b78c67c-Paper.pdf

  9. Dua, D., Graff, C.: UCI machine learning repository (2017), www.archive.ics.uci.edu/ml

  10. Ghahramani, Z., Jordan, M.: Supervised learning from incomplete data via an em approach. In: Advances in Neural Information Processing Systems (NeurIPS) (1993). www.proceedings.neurips.cc/paper/1993/file/f2201f5191c4e92cc5af043eebfd0946-Paper.pdf

  11. Ghahramani, Z., Jordan, M.I.: Learning from incomplete data. Technical Report AIM-1509CBCL-108, Massachusetts Institute of Technology (1995)

    Google Scholar 

  12. Ghalebikesabi, S., Cornish, R., Kelly, L.J., Holmes, C.: Deep generative pattern-set mixture models for nonignorable missingness. arXiv preprint arXiv:2103.03532 (2021)

  13. Goodfellow, I., et al.: Generative Adversarial Nets. In: Advances in Neural Information Processing Systems (NeurIPS) (2014). www.proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

  14. Goodfellow, I.J.: NIPS 2016 tutorial: Generative adversarial networks. CoRR abs/1701.00160 (2017), arxiv.org:1701.00160

  15. Ipsen, N.B., Mattei, P.A., Frellsen, J.: not-MIWAE: Deep Generative Modelling with Missing not at Random Data. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2014)

    Google Scholar 

  17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  18. Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3911–3919. IEEE (2017)

    Google Scholar 

  19. Lim, D.K., Rashid, N.U., Oliva, J.B., Ibrahim, J.G.: Unsupervised imputation of non-ignorably missing data using importance-weighted autoencoders (2021). https://doi.org/10.48550/ARXIV.2101.07357, arxiv.org/abs/2101.07357

  20. Little, R., Rubin, D.: Statistical Analysis with Missing Data. Wiley Series in Probability and Statistics, Wiley (2019). www.books.google.at/books?id=BemMDwAAQBAJ

  21. Little, R.J., Rubin, D.B.: Statistical analysis with missing data, vol. 793. John Wiley & Sons (2019)

    Google Scholar 

  22. Liu, Y., Lin, S., Clark, R.: Towards consistent variational auto-encoding, pp. 13869–13870 (2020)

    Google Scholar 

  23. Ma, C., Tschiatschek, S., Palla, K., Hernandez-Lobato, J.M., Nowozin, S., Zhang, C.: Eddi: Efficient dynamic discovery of high-value information with partial vae. In: International Conference on Machine Learning (ICML), pp. 4234–4243 (2019)

    Google Scholar 

  24. Ma, C., Zhang, C.: Identifiable Generative Models for Missing Not at Random Data Imputation. 34, 27645–27658 (2021)

    Google Scholar 

  25. Mattei, P.A., Frellsen, J.: MIWAE: Deep generative modelling and imputation of incomplete data sets. In: International Conference on Machine Learning (ICML), pp. 4413–4423 (2019)

    Google Scholar 

  26. Mohan, K., Pearl, J., Tian, J.: Graphical models for inference with missing data. vol. 26 (2013)

    Google Scholar 

  27. Müller, T., McWilliams, B., Rousselle, F., Gross, M., Novák, J.: neural importance sampling. vol. 38, pp. 1–19 (2019)

    Google Scholar 

  28. Nazabal, A., Olmos, P.M., Ghahramani, Z., Valera, I.: Handling incomplete heterogeneous data using vaes. vol. 107, p. 107501. Elsevier (2020)

    Google Scholar 

  29. Newman, D.A.: Missing data: Five practical guidelines. vol. 17, pp. 372–411. Sage Publications Sage CA: Los Angeles, CA (2014)

    Google Scholar 

  30. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). https://doi.org/10.48550/ARXIV.1511.06434, arxiv.org/abs/1511.06434

  31. Rezende, D., Mohamed, S.: Variational Inference with Normalizing Flows. In: International Conference on Machine Learning (ICML), pp. 1530–1538 (2015)

    Google Scholar 

  32. Riggi, S., Riggi, D., Riggi, F.: Handling missing data for the identification of charged particles in a multilayer detector: A comparison between different imputation methods. vol. 780, pp. 81–90. Elsevier BV (2015). https://doi.org/10.1016/j.nima.2015.01.063

  33. Rubin, D.B.: Inference and missing data. vol. 63, pp. 581–592. Oxford University Press (1976)

    Google Scholar 

  34. Sinha, S., Dieng, A.B.: Consistency regularization for variational auto-encoders. 34, 12943–12954 (2021)

    Google Scholar 

  35. Smith, D.M.: The cost of lost data. 6, 1–9 (2003)

    Google Scholar 

  36. Stekhoven, D.J., Bühlmann, P.: MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2011)

    Article  Google Scholar 

  37. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: IEEE International Conference on Computer Vision (ICCV), pp. 843–852 (2017)

    Google Scholar 

  38. Wen, X., Li, Z., Peng, D., Zhou, W., Liu, Y.: Missing data recovery using data fusion of incomplete complementary datasets: A particle image velocimetry application. Phys. Fluids 31, 025105 (2019)

    Google Scholar 

  39. Wu, G., Domke, J., Sanner, S.: Conditional inference in pre-trained variational autoencoders via cross-coding. arXiv preprint arXiv:1805.07785 (2018)

  40. Yoon, J., Jordon, J., Schaar, M.: GAIN: Missing data imputation using generative adversarial nets. In: International Conference on Machine Learning (ICML), pp. 5689–5698 (2018)

    Google Scholar 

  41. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. vol. 30 (2017)

    Google Scholar 

  42. Zhang, C., Bütepage, J., Kjellström, H., Mandt, S.: Advances in Variational Inference, vol. 41, pp. 2008–2026. IEEE (2018)

    Google Scholar 

  43. Zhu, M., Wang, J., Yan, C.: Non-autoregressive neural machine translation with consistency regularization optimized variational framework. In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 607–617. Association for Computational Linguistics, Seattle, United States (Jul 2022). https://doi.org/10.18653/v1/2022.naacl-main.45, www.aclanthology.org/2022.naacl-main.45

  44. Zhu, X., Wu, X.: Cost-constrained data acquisition for intelligent data preparation. IEEE17, 1542–1556 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Tschiatschek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sudak, T., Tschiatschek, S. (2023). Posterior Consistency for Missing Data in Variational Autoencoders. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14170. Springer, Cham. https://doi.org/10.1007/978-3-031-43415-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43415-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43414-3

  • Online ISBN: 978-3-031-43415-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics