Skip to main content

cuSLINK: Single-Linkage Agglomerative Clustering on the GPU

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

In this paper, we propose cuSLINK, a novel and state-of-the-art reformulation of the SLINK algorithm on the GPU which requires only O(Nk) space and uses a parameter k to trade off space and time. We also propose a set of novel and reusable building blocks that compose cuSLINK. These building blocks include highly optimized computational patterns for k-NN graph construction, spanning trees, and dendrogram cluster extraction. We show how we used our primitives to implement cuSLINK end-to-end on the GPU, further enabling a wide range of real-world data mining and machine learning applications that were once intractable. In addition to being a primary computational bottleneck in the popular HDBSCAN algorithm, the impact of our end-to-end cuSLINK algorithm spans a large range of important applications, including cluster analysis in social and computer networks, natural language processing, and computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anibal, J., et al.: HAL-X: scalable hierarchical clustering for rapid and tunable single-cell analysis. PLoS Comput. Biol. 18(10), e1010349 (2022)

    Google Scholar 

  2. Arefin, A.S., Riveros, C., Berretta, R., Moscato, P.: kNN-Borůvka-GPU: a fast and scalable MST construction from kNN graphs on GPU. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 71–86. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_6. http://www.newcastle.edu.au/research-centre/cibm/

  3. Arefin, A.S., Riveros, C., Berretta, R., Moscato, P.: KNN-MST-agglomerative: a fast and scalable graph-based data clustering approach on GPU. In: 2012 7th International Conference on Computer Science & Education (ICCSE), pp. 585–590. IEEE (2012)

    Google Scholar 

  4. Bakunas-Milanowski, D., Rego, V., Sang, J., Chansu, Y.: Efficient algorithms for stream compaction on GPUS. Int. J. Netw. Comput. 7(2), 208–226 (2017)

    Google Scholar 

  5. Cayton, L.: Accelerating nearest neighbor search on manycore systems. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium, pp. 402–413. IEEE (2012)

    Google Scholar 

  6. Chan, D.M., Rao, R., Huang, F., Canny, J.F.: T-SNE-CUDA: GPU-accelerated t-SNE and its applications to modern data. In: 2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), pp. 330–338 (2018). https://doi.org/10.1109/CAHPC.2018.8645912

  7. Chang, D.J., Kantardzic, M.M., Ouyang, M.: Hierarchical clustering with CUDA/GPU. In: ISCA PDCCS, pp. 7–12. Citeseer (2009)

    Google Scholar 

  8. Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: 24th Annual Symposium on Foundations of Computer Science (SFCS 1983), pp. 226–232 (1983). https://doi.org/10.1109/SFCS.1983.16

  9. Da Silva Sousa, C., Mariano, A., Proença, A.: A generic and highly efficient parallel variant of Boråvka’s algorithm. In: Proceedings - 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2015, pp. 610–617 (2015). https://doi.org/10.1109/PDP.2015.72. http://cudpp.github.io/https://www.semanticscholar.org/paper/A-Generic-and-Highly-Efficient-Parallel-Variant-of-Sousa-Mariano/e9106835936711b416189cd5917dd61704510ee4

  10. Dash, M., Petrutiu, S., Scheuermann, P.: pPOP: fast yet accurate parallel hierarchical clustering using partitioning. Data Knowl. Eng. 61(3), 563–578 (2007)

    Article  Google Scholar 

  11. Gasperini, M., et al.: A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176(1–2), 377–390 (2019)

    Google Scholar 

  12. Harish, P., Vineet, V., Narayanan, P.J.: Large graph algorithms for massively multithreaded architectures. Iiit/Tr(74), 1–20 (2009). 10.1.1.417.2999

    Google Scholar 

  13. Hendrix, W., Palsetia, D., Patwary, M.M.A., Agrawal, A., Liao, W.K., Choudhary, A.: A scalable algorithm for single-linkage hierarchical clustering on distributed-memory architectures. In: 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV), pp. 7–13. IEEE (2013)

    Google Scholar 

  14. Hendrix, W., Patwary, M.M.A., Agrawal, A., Liao, W.K., Choudhary, A.: Parallel hierarchical clustering on shared memory platforms. In: 2012 19th International Conference on High Performance Computing, pp. 1–9. IEEE (2012)

    Google Scholar 

  15. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2010)

    Article  Google Scholar 

  16. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUS (2017). https://doi.org/10.48550/ARXIV.1702.08734. https://arxiv.org/abs/1702.08734

  17. McInnes, L., Healy, J.: Accelerated hierarchical density based clustering. In: IEEE International Conference on Data Mining Workshops, ICDMW 2017-November, pp. 33–42 (2017). https://doi.org/10.1109/ICDMW.2017.12

  18. Naumov, M., et al.: AMGX: a library for GPU accelerated algebraic multigrid and preconditioned iterative methods. SIAM J. Sci. Comput. 37(5), S602–S626 (2015). https://doi.org/10.1137/140980260

    Article  MathSciNet  MATH  Google Scholar 

  19. Nolet, C.J., et al.: Bringing UMAP closer to the speed of light with GPU acceleration (2020). https://doi.org/10.48550/ARXIV.2008.00325. https://arxiv.org/abs/2008.00325

  20. Olson, C.F.: Parallel algorithms for hierarchical clustering. Parallel Comput. 21(8), 1313–1325 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pan, J., Manocha, D.: Fast GPU-based locality sensitive hashing for K-nearest neighbor computation. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 211–220 (2011)

    Google Scholar 

  22. Raff, E.: JSAT: Java statistical analysis tool, a library for machine learning. J. Mach. Learn. Res. 18(23), 1–5 (2017)

    Google Scholar 

  23. Sankaranarayanan, J., Samet, H., Varshney, A.: A fast all nearest neighbor algorithm for applications involving large point-clouds. Comput. Graph. 31(2), 157–174 (2007)

    Article  Google Scholar 

  24. Shalom, S.A.A., Dash, M., Tue, M.: An approach for fast hierarchical agglomerative clustering using graphics processors with CUDA. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 35–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13672-6_4. https://link.springer.com/chapter/10.1007/978-3-642-13672-6_4

  25. Shalom, S.A., Dash, M.: Efficient hierarchical agglomerative clustering algorithms on GPU using data partitioning. In: 2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 134–139. IEEE (2011)

    Google Scholar 

  26. Shalom, S.A., Dash, M., Tue, M., Wilson, N.: Hierarchical agglomerative clustering using graphics processor with compute unified device architecture. In: 2009 International Conference on Signal Processing Systems, pp. 556–561. IEEE (2009)

    Google Scholar 

  27. Sibson, R.: SLINK: an optimally efficient algorithm for the single-link cluster method. Comput. J. 16(1), 30–34 (1973). https://doi.org/10.1093/comjnl/16.1.30

  28. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM (JACM) 22(2), 215–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vineet, V., Harish, P., Patidar, S., Narayanan, P.J.: Fast minimum spanning tree for large graphs on the GPU. In: Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 167–172 (2009). https://cvit.iiit.ac.in/resources

  30. Yengo, L., et al.: A saturated map of common genetic variants associated with human height. Nature 610(7933), 704–712 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey J. Nolet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nolet, C.J. et al. (2023). cuSLINK: Single-Linkage Agglomerative Clustering on the GPU. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14169. Springer, Cham. https://doi.org/10.1007/978-3-031-43412-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43412-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43411-2

  • Online ISBN: 978-3-031-43412-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics