Skip to main content

Contrastive Hierarchical Clustering

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14169))

Abstract

Deep clustering has been dominated by flat models, which split a dataset into a predefined number of groups. Although recent methods achieve an extremely high similarity with the ground truth on popular benchmarks, the information contained in the flat partition is limited. In this paper, we introduce CoHiClust, a Contrastive Hierarchical Clustering model based on deep neural networks, which can be applied to typical image data. By employing a self-supervised learning approach, CoHiClust distills the base network into a binary tree without access to any labeled data. The hierarchical clustering structure can be used to analyze the relationship between clusters, as well as to measure the similarity between data points. Experiments demonstrate that CoHiClust generates a reasonable structure of clusters, which is consistent with our intuition and image semantics. Moreover, it obtains superior clustering accuracy on most of the image datasets compared to the state-of-the-art flat clustering models. Our implementation is available at https://github.com/MichalZnalezniak/Contrastive-Hierarchical-Clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alaniz, S., Marcos, D., Schiele, B., Akata, Z.: Learning decision trees recurrently through communication. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13518–13527 (2021)

    Google Scholar 

  2. Barai, A., Dey, L.: Outlier detection and removal algorithm in k-means and hierarchical clustering. World J. Comput. Appli. Technol. 5(2), 24–29 (2017)

    Article  Google Scholar 

  3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19. MIT Press (2006)

    Google Scholar 

  4. Bhattacharyya, A.: On a measure of divergence between two multinomial populations. Sankhyā: the Indian. Stat. 401–406 (1946)

    Google Scholar 

  5. Cai, D., He, X., Wang, X., Bao, H., Han, J.: Locality preserving nonnegative matrix factorization 9, 1010–1015 (2009)

    Google Scholar 

  6. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (Oct 2017)

    Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 1597–1607. PMLR (13–18 Jul 2020), https://proceedings.mlr.press/v119/chen20j.html

  8. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 539–546. IEEE (2005)

    Google Scholar 

  9. Dang, Z., Deng, C., Yang, X., Wei, K., Huang, H.: Nearest neighbor matching for deep clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13693–13702 (2021)

    Google Scholar 

  10. Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv preprint arXiv:1711.09784 (2017)

  11. Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept of mutual nearest neighbourhood. Pattern Recogn. 10, 105–112 (1978)

    Article  MATH  Google Scholar 

  12. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  13. Guérin, J., Gibaru, O., Thiery, S., Nyiri, E.: Cnn features are also great at unsupervised classification. arXiv preprint arXiv:1707.01700 (2017)

  14. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: IJCAI, pp. 1753–1759 (2017)

    Google Scholar 

  15. Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: International Conference on Neural Information Processing, pp. 373–382. Springer (2017). https://doi.org/10.1007/978-3-319-70096-0_39

  16. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9726–9735 (2020). https://doi.org/10.1109/CVPR42600.2020.00975

  17. Hu, W., Miyato, T., Tokui, S., Matsumoto, E., Sugiyama, M.: Learning discrete representations via information maximizing self-augmented training. In: International Conference on Machine Learning, pp. 1558–1567. PMLR (2017)

    Google Scholar 

  18. Huang, J., Gong, S., Zhu, X.: Deep semantic clustering by partition confidence maximisation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8849–8858 (2020)

    Google Scholar 

  19. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9865–9874 (2019)

    Google Scholar 

  20. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  21. Kobren, A., Monath, N., Krishnamurthy, A., McCallum, A.: A hierarchical algorithm for extreme clustering. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 255–264 (2017)

    Google Scholar 

  22. Lakhani, J., Chowdhary, A., Harwani, D.: Clustering techniques for biological sequence analysis: a review. J. Appli. Inform. Sci. 3(1), 14–32 (2015)

    Google Scholar 

  23. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8547–8555 (2021)

    Google Scholar 

  24. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35(10), pp. 8547–8555 (May 2021), https://ojs.aaai.org/index.php/AAAI/article/view/17037

  25. MacQueen, J.: Some methods for classification and analysis of multivariate observations 1, 281–297 (1967)

    Google Scholar 

  26. Mautz, D., Plant, C., Böhm, C.: Deep embedded cluster tree. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 1258–1263. IEEE (2019)

    Google Scholar 

  27. Mautz, D., Plant, C., Böhm, C.: Deepect: the deep embedded cluster tree. Data Sci. Eng. 5(4), 419–432 (2020)

    Article  Google Scholar 

  28. Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Transa]. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  29. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2(1), 86–97 (2012)

    Article  Google Scholar 

  30. Naumov, S., Yaroslavtsev, G., Avdiukhin, D.: Objective-based hierarchical clustering of deep embedding vectors. In: AAAI, pp. 9055–9063 (2021)

    Google Scholar 

  31. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (11 2015)

  32. Śmieja, M., Warszycki, D., Tabor, J., Bojarski, A.J.: Asymmetric clustering index in a case study of 5-ht1a receptor ligands. PLoS ONE 9(7), e102069 (2014)

    Article  Google Scholar 

  33. Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A., Nori, A.: Adaptive neural trees. In: International Conference on Machine Learning, pp. 6166–6175. PMLR (2019)

    Google Scholar 

  34. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(110), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Wan, A., et al.: Nbdt: neural-backed decision trees. arXiv preprint arXiv:2004.00221 (2020)

  36. Wu, J., et al.: Deep comprehensive correlation mining for image clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (October 2019)

    Google Scholar 

  37. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  38. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487. PMLR (2016)

    Google Scholar 

  39. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2016)

    Google Scholar 

  40. Yang, R., Qu, D., Qian, Y., Dai, Y., Zhu, S.: An online log template extraction method based on hierarchical clustering. EURASIP J. Wirel. Commun. Netw. 2019(1), 1–12 (2019)

    Article  Google Scholar 

  41. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  42. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528–2535 (2010)

    Google Scholar 

  43. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems, vol. 17. MIT Press (2004)

    Google Scholar 

  44. Zhang, F., Li, L., Hua, Q., Dong, C.R., Lim, B.H.: Improved deep clustering model based on semantic consistency for image clustering. Knowl.-Based Syst. 253, 109507 (2022) https://doi.org/10.1016/j.knosys.2022.109507, https://www.sciencedirect.com/science/article/pii/S0950705122007560

  45. Zhang, Y., Ahmed, A., Josifovski, V., Smola, A.: Taxonomy discovery for personalized recommendation. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pp. 243–252 (2014)

    Google Scholar 

  46. Znaleźniak, M., Rola, P., Kaszuba, P., Tabor, J., Śmieja, M.: Contrastive hierarchical clustering. arXiv preprint arXiv:2303.03389 (2023)

  47. Zou, Q., Lin, G., Jiang, X., Liu, X., Zeng, X.: Sequence clustering in bioinformatics: an empirical study. Brief. Bioinform. 21(1), 1–10 (2020)

    Google Scholar 

Download references

Acknowledgments

The research of P. Rola was supported by the National Science Centre (Poland), grant no. 2021/41/B/ST6/01370. The research of J. Tabor was supported by the National Science Centre (Poland), grant no. 2022/45/B/ST6/01117. The research of M. Śmieja was supported by the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund in the POIR.04.04.00-00-14DE/18-00 project carried out within the Team-Net program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Śmieja .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3831 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Znalezniak, M., Rola, P., Kaszuba, P., Tabor, J., Śmieja, M. (2023). Contrastive Hierarchical Clustering. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14169. Springer, Cham. https://doi.org/10.1007/978-3-031-43412-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43412-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43411-2

  • Online ISBN: 978-3-031-43412-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics