Skip to main content

Learning Conditional Instrumental Variable Representation for Causal Effect Estimation

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14169))

Abstract

One of the fundamental challenges in causal inference is to estimate the causal effect of a treatment on its outcome of interest from observational data. However, causal effect estimation often suffers from the impacts of confounding bias caused by unmeasured confounders that affect both the treatment and the outcome. The instrumental variable (IV) approach is a powerful way to eliminate the confounding bias from latent confounders. However, the existing IV-based estimators require a nominated IV, and for a conditional IV (CIV) the corresponding conditioning set too, for causal effect estimation. This limits the application of IV-based estimators. In this paper, by leveraging the advantage of disentangled representation learning, we propose a novel method, named DVAE.CIV, for learning and disentangling the representations of CIV and the representations of its conditioning set for causal effect estimations from data with latent confounders. Extensive experimental results on both synthetic and real-world datasets demonstrate the superiority of the proposed DVAE.CIV method against the existing causal effect estimators.

D. Cheng and Z. Xu—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/IRON13/DVAE.CIV.

  2. 2.

    https://github.com/WeijiaZhang24/TEDVAE.

  3. 3.

    https://CRAN.R-project.org/package=Hmisc.

References

  1. Abadie, A., Imbens, G.W.: Large sample properties of matching estimators for average treatment effects. Econometrica 74(1), 235–267 (2006)

    Google Scholar 

  2. Angrist, J.D., Imbens, G.W.: Two-stage least squares estimation of average causal effects in models with variable treatment intensity. J. Am. Stat. Assoc. 90(430), 431–442 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angrist, J.D., Imbens, G.W., Rubin, D.B.: Identification of causal effects using instrumental variables. J. Am. Stat. Assoc. 91(434), 444–455 (1996)

    Article  MATH  Google Scholar 

  4. Athey, S., Tibshirani, J., Wager, S.: Generalized random forests. Ann. Stat. 47(2), 1148–1178 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bingham, E., Chen, J.P., et al.: Pyro: deep universal probabilistic programming. J. Mach. Learn. Res. 20(1), 973–978 (2019)

    Google Scholar 

  6. Brito, C., Pearl, J.: Generalized instrumental variables. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 85–93 (2002)

    Google Scholar 

  7. Card, D.: Using geographic variation in college proximity to estimate the return to schooling (1993)

    Google Scholar 

  8. Cattaneo, M.D.: Efficient semiparametric estimation of multi-valued treatment effects under ignorability. J. Econometrics 155(2), 138–154 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, D., Li, J., Liu, L., Liu, J., Le, T.D.: Data-driven causal effect estimation based on graphical causal modelling: A survey. arXiv preprint arXiv:2208.09590 (2022)

  10. Chernozhukov, V., et al.: Double/debiased machine learning for treatment and structural parameters. Econometrics J. 21(1), C1–C68 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Connors, A.F., Speroff, T., et al.: The effectiveness of right heart catheterization in the initial care of critically III patients. J. Am. Med. Assoc. 276(11), 889–897 (1996)

    Article  Google Scholar 

  12. Foster, D.J., Syrgkanis, V.: Orthogonal statistical learning. arXiv preprint arXiv:1901.09036 (2019)

  13. Guo, R., Cheng, L., Li, J., Hahn, P.R., Liu, H.: A survey of learning causality with data: problems and methods. ACM Comput. Surv. (CSUR) 53(4), 1–37 (2020)

    Google Scholar 

  14. Hartford, J., Lewis, G., et al.: Deep IV: A flexible approach for counterfactual prediction. In: International Conference on Machine Learning, pp. 1414–1423 (2017)

    Google Scholar 

  15. Hassanpour, N., Greiner, R.: Learning disentangled representations for counterfactual regression. In: International Conference on Learning Representations, pp. 1–11 (2019)

    Google Scholar 

  16. Hernán, M.A., Robins, J.M.: Instruments for causal inference: an epidemiologist’s dream? Epidemiology 17(4), 360–372 (2006)

    Google Scholar 

  17. Hill, J.L.: Bayesian nonparametric modeling for causal inference. J. Comput. Graph. Stat. 20(1), 217–240 (2011)

    Article  MathSciNet  Google Scholar 

  18. Imbens, G.W.: Instrumental variables: an econometrician’s perspective. Stat. Sci. 29(3), 323–358 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Imbens, G.W., Rubin, D.B.: Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  20. Kang, H., Zhang, A., Cai, T.T., Small, D.S.: Instrumental variables estimation with some invalid instruments and its application to mendelian randomization. J. Am. Stat. Assoc. 111(513), 132–144 (2016)

    Article  MathSciNet  Google Scholar 

  21. Khemakhem, I., Kingma, D., Monti, R., Hyvarinen, A.: Variational autoencoders and nonlinear ICA: a unifying framework. In: International Conference on Artificial Intelligence and Statistics, pp. 2207–2217. PMLR (2020)

    Google Scholar 

  22. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Conference on Learning Representations (2014)

    Google Scholar 

  23. Kuang, Z., Sala, F., et al.: Ivy: instrumental variable synthesis for causal inference. In: International Conference on Artificial Intelligence and Statistics, pp. 398–410 (2020)

    Google Scholar 

  24. LaLonde, R.J.: Evaluating the econometric evaluations of training programs with experimental data. Am. Econ. Rev. 76(4), 604–620 (1986)

    Google Scholar 

  25. Loh, W.W., Vansteelandt, S.: Confounder selection strategies targeting stable treatment effect estimators. Stat. Med. 40(3), 607–630 (2021)

    Article  MathSciNet  Google Scholar 

  26. Louizos, C., Shalit, U., Mooij, J.M., Sontag, D., Zemel, R., Welling, M.: Causal effect inference with deep latent-variable models. In: Advances in Neural Information Processing Systems, pp. 6446–6456 (2017)

    Google Scholar 

  27. Martens, E.P., Pestman, W.R., de Boer, A., Belitser, S.V., Klungel, O.H.: Instrumental variables: application and limitations. Epidemiology 17(3), pp. 260–267 (2006)

    Google Scholar 

  28. Martinussen, T., Nørbo Sørensen, D., Vansteelandt, S.: Instrumental variables estimation under a structural cox model. Biostatistics 20(1), 65–79 (2019)

    Article  MathSciNet  Google Scholar 

  29. Paszke, A., Gross, S., et al.: Pytorch: an imperative style, high-performance deep learning library. In: International Conference on Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  30. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  31. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sohn, K., Yan, X., Lee, H.: Learning structured output representation using deep conditional generative models. In: Proceedings of the 28th International Conference on Neural Information Processing Systems. vol. 2, pp. 3483–3491 (2015)

    Google Scholar 

  33. Syrgkanis, V., Lei, V., et al.: Machine learning estimation of heterogeneous treatment effects with instruments. In: International Conference on Neural Information Processing Systems, pp. 15193–15202 (2019)

    Google Scholar 

  34. Verbeek, M.: A Guide to Modern Econometrics. Wiley, Hoboken (2008)

    Google Scholar 

  35. Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113(523), 1228–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan, J., Wu, A., et al.: Auto IV: counterfactual prediction via automatic instrumental variable decomposition. ACM Trans. Knowl. Discov. Data 16(4), 1–20 (2022)

    Google Scholar 

  37. Van der Zander, B., Liśkiewicz, M., Textor, J.: Efficiently finding conditional instruments for causal inference, pp. 3243–3249 (2015)

    Google Scholar 

  38. Zhang, W., Liu, L., Li, J.: Treatment effect estimation with disentangled latent factors. In: The AAAI Conference on Artificial Intelligence, pp. 10923–10930 (2021)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Australian Research Council (grant number: DP200101210 and DP230101122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debo Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, D., Xu, Z., Li, J., Liu, L., Le, T.D., Liu, J. (2023). Learning Conditional Instrumental Variable Representation for Causal Effect Estimation. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14169. Springer, Cham. https://doi.org/10.1007/978-3-031-43412-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43412-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43411-2

  • Online ISBN: 978-3-031-43412-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics