Skip to main content

A Transductive Forest for Anomaly Detection with Few Labels

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Research Track (ECML PKDD 2023)

Abstract

Extensive labeled training data for anomaly detection is enormously expensive and often unavailable in data-sensitive applications due to privacy constraints. We propose TransForest, a transductive forest for anomaly detection, in the semi-supervised setting where few labels are available. Guided by little label information, TransForest pushes classification boundaries toward sensitive areas where abnormal and normal points are located, increasing learning capacity. Empirically, TransForest is competitive with other unsupervised and semi-supervised representative detectors given a small number of labeled points. TransForest also offers a feature importance ranking consistent with the rankings provided by popular supervised forests on low-dimensional data sets. Our code is available at https://github.com/jzha968/transForest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Minqi824/ADBench/tree/main/datasets.

References

  1. Aggarwal, C.C.: Outlier Analysis. Springer (2013). https://doi.org/10.1007/978-3-319-47578-3

  2. Bercea, C.I., Wiestler, B., Rueckert, D., Albarqouni, S.: Federated disentangled representation learning for unsupervised brain anomaly detection. Nat. Mach. Intell. 4(8), 685–695 (2022)

    Article  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: SIGMOD, pp. 93–104 (2000)

    Google Scholar 

  5. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: KDD, pp. 785–794 (2016)

    Google Scholar 

  6. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis. 7(2–3), 81–227 (2012)

    MATH  Google Scholar 

  7. Dou, Q., et al.: Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study. npj Digit. Med. 4(60) (2021)

    Google Scholar 

  8. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learn. 63(1), 3–42 (2006)

    Article  MATH  Google Scholar 

  9. Goldstein, M., Dengel, A.: Histogram-based outlier score (HBOS): A fast unsupervised anomaly detection algorithm. In: KI-2012: Poster And Demo Track, vol. 9 (2012)

    Google Scholar 

  10. Gopalan, P., Sharan, V., Wieder, U.: PIDForest: anomaly detection via partial identification. In: NeurIPS, pp. 15783–15793 (2019)

    Google Scholar 

  11. Guha, S., Mishra, N., Roy, G., Schrijvers, O.: Robust random cut forest based anomaly detection on streams. In: ICML, pp. 2712–2721 (2016)

    Google Scholar 

  12. Han, S., Hu, X., Huang, H., Jiang, M., Zhao, Y.: ADBench: anomaly detection benchmark. In: NeurIPS (2022)

    Google Scholar 

  13. Keller, F., Müller, E., Böhm, K.: HiCS: high contrast subspaces for density-based outlier ranking. In: ICDE, pp. 1037–1048 (2012)

    Google Scholar 

  14. Kriegel, H.P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-parallel subspaces of high dimensional data. In: PAKDD, pp. 831–838 (2009)

    Google Scholar 

  15. Li, Z., Zhao, Y., Botta, N., Ionescu, C., Hu, X.: COPOD: copula-based outlier detection. In: ICDM, pp. 1118–1123 (2020)

    Google Scholar 

  16. Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., Chen, G.: ECOD: unsupervised outlier detection using empirical cumulative distribution functions. In: TKDE, pp. 1–1 (2022)

    Google Scholar 

  17. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM, pp. 413–422 (2008)

    Google Scholar 

  18. Manevitz, L.M., Yousef, M.: One-class svms for document classification. J. Mach. Learn. Res. 2, 139–154 (2001)

    MATH  Google Scholar 

  19. Marteau, P.F., Soheily-Khah, S., Béchet, N.: Hybrid isolation forest-application to intrusion detection. arXiv preprint arXiv:1705.03800 (2017)

  20. Pang, G., Cao, L., Chen, L., Liu, H.: Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: KDD, pp. 2041–2050 (2018)

    Google Scholar 

  21. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

    Article  Google Scholar 

  22. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: KDD, pp. 353–362 (2019)

    Google Scholar 

  23. Pevnỳ, T.: LODA: lightweight on-line detector of anomalies. Mach. Learn. 102(2), 275–304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. In: SIGMOD, pp. 427–438 (2000)

    Google Scholar 

  25. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. In: Proceedings of the IEEE (2021)

    Google Scholar 

  26. Ruff, L., et al.: Deep semi-supervised anomaly detection. In: ICLR (2020)

    Google Scholar 

  27. Sathe, S., Aggarwal, C.C.: Subspace histograms for outlier detection in linear time. Knowl. Inf. Syst. 56(3), 691–715 (2018)

    Article  Google Scholar 

  28. Schubert, E., Zimek, A., Kriegel, H.: Generalized outlier detection with flexible kernel density estimates. In: SDM, pp. 542–550 (2014)

    Google Scholar 

  29. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley Series in Probability and Statistics. Wiley (1992)

    Google Scholar 

  30. Zhao, Y., Hryniewicki, M.K.: XGBOD: improving supervised outlier detection with unsupervised representation learning. In: IJCNN, pp. 1–8 (2018)

    Google Scholar 

  31. Zhao, Y., Nasrullah, Z., Li, Z.: PyOD: a python toolbox for scalable outlier detection. JMLR 20, 1–7 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ninh Pham .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Statement

Since we propose a new learning model for anomaly detection, there are no ethical issues.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Pham, N., Dobbie, G. (2023). A Transductive Forest for Anomaly Detection with Few Labels. In: Koutra, D., Plant, C., Gomez Rodriguez, M., Baralis, E., Bonchi, F. (eds) Machine Learning and Knowledge Discovery in Databases: Research Track. ECML PKDD 2023. Lecture Notes in Computer Science(), vol 14169. Springer, Cham. https://doi.org/10.1007/978-3-031-43412-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43412-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43411-2

  • Online ISBN: 978-3-031-43412-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics