Skip to main content

\(\alpha _i\)-Metric Graphs: Radius, Diameter and all Eccentricities

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14093))

Included in the following conference series:

Abstract

We extend known results on chordal graphs and distance-hereditary graphs to much larger graph classes by using only a common metric property of these graphs. Specifically, a graph is called \(\alpha _i\)-metric (\(i\in \mathcal {N}\)) if it satisfies the following \(\alpha _i\)-metric property for every vertices uwv and x: if a shortest path between u and w and a shortest path between x and v share a terminal edge vw, then \(d(u,x)\ge d(u,v) + d(v,x)-i\). Roughly, gluing together any two shortest paths along a common terminal edge may not necessarily result in a shortest path but yields a “near-shortest” path with defect at most i. It is known that \(\alpha _0\)-metric graphs are exactly ptolemaic graphs, and that chordal graphs and distance-hereditary graphs are \(\alpha _i\)-metric for \(i=1\) and \(i=2\), respectively. We show that an additive O(i)-approximation of the radius, of the diameter, and in fact of all vertex eccentricities of an \(\alpha _i\)-metric graph can be computed in total linear time. Our strongest results are obtained for \(\alpha _1\)-metric graphs, for which we prove that a central vertex can be computed in subquadratic time, and even better in linear time for so-called \((\alpha _1,\varDelta )\)-metric graphs (a superclass of chordal graphs and of plane triangulations with inner vertices of degree at least 7). The latter answers a question raised in (Dragan, IPL, 2020). Our algorithms follow from new results on centers and metric intervals of \(\alpha _i\)-metric graphs. In particular, we prove that the diameter of the center is at most \(3i+2\) (at most 3, if \(i=1\)). The latter partly answers a question raised in (Yushmanov & Chepoi, Mathematical Problems in Cybernetics, 1991).

This work was supported by a grant of the Romanian Ministry of Research, Innovation and Digitalization, CCCDI - UEFISCDI, proect number PN-III-P2-2.1-PED-2021-2142, within PNCDI III.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is conjectured in [39] that \(diam(C(G))\le i+2\) for every \(\alpha _i\)-metric graph G.

References

  1. Abboud, A., Vassilevska Williams, V., Wang, J.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: SODA, pp. 377–391. SIAM (2016)

    Google Scholar 

  2. Backurs, A., Roditty, L., Segal, G., Vassilevska Williams, V., Wein, N.: Towards tight approximation bounds for graph diameter and eccentricities. In: STOC 2018, pp. 267–280 (2018)

    Google Scholar 

  3. Bandelt, H.-J., Chepoi, V.: 1-hyperbolic graphs. SIAM J. Discr. Math. 16, 323–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boltyanskii, V.G., Soltan, P.S.: Combinatorial geometry of various classes of convex sets [in Russian]. S̆tiinţa, Kishinev (1978)

    Google Scholar 

  5. Borassi, M., Crescenzi, P., Habib, M.: Into the square: on the complexity of some quadratic-time solvable problems. Electron. Notes TCS 322, 51–67 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Brandstädt, A., Chepoi, V., Dragan, F.F.: The algorithmic use of hypertree structure and maximum neighbourhood orderings. DAM 82, 43–77 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Corneil, D., Dragan, F.F., Habib, M., Paul, C.: Diameter determination on restricted graph families. DAM 113, 143–166 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Corneil, D.G., Dragan, F.F., Köhler, E.: On the power of BFS to determine a graph’s diameter. Networks 42, 209–222 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chechik, S., Larkin, D.H., Roditty, L., Schoenebeck, G., Tarjan, R.E., Vassilevska Williams, V.: Better approximation algorithms for the graph diameter. In: SODA 2014, pp. 1041–1052 (2014)

    Google Scholar 

  10. Chepoi, V.: Some \(d\)-convexity properties in triangulated graphs. In: Mathematical Research, vol. 87, pp. 164–177. Ştiinţa, Chişinău (1986). (Russian)

    Google Scholar 

  11. Chepoi, V.: Centers of triangulated graphs. Math. Notes 43, 143–151 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chepoi, V., Dragan, F.: A linear-time algorithm for finding a central vertex of a chordal graph. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 159–170. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0049406

    Chapter  Google Scholar 

  13. Chepoi, V., Dragan, F.F.: Finding a central vertex in an HHD-free graph. DAM 131(1), 93–111 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Chepoi, V.D., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of \(\delta \)-hyperbolic geodesic spaces and graphs. In: Proceedings of the 24th Annual ACM Symposium on Computational Geometry (SoCG 2008), 9–11 June 2008, College Park, Maryland, USA, pp. 59–68 (2008)

    Google Scholar 

  15. Chepoi, V., Dragan, F.F., Habib, M., Vaxès, Y., Alrasheed, H.: Fast approximation of eccentricities and distances in hyperbolic graphs. J. Graph Algorithms Appl. 23, 393–433 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dragan, F.F.: Centers of graphs and the Helly property (in Russian). Ph.D. thesis, Moldava State University, Chişinău (1989)

    Google Scholar 

  17. Dragan, F.F.: HT-graphs: centers, connected R-domination and Steiner trees. Comput. Sci. J. Moldova (Kishinev) 1, 64–83 (1993)

    MathSciNet  Google Scholar 

  18. Dragan, F.F.: An eccentricity 2-approximating spanning tree of a chordal graph is computable in linear time. Inf. Process. Lett. 154, 105873 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dragan, F.F., Ducoffe, G.: \(\alpha _i\)-metric graphs: radius, diameter and all eccentricities. CoRR, abs/2305.02545 (2023)

    Google Scholar 

  20. Dragan, F.F., Ducoffe, G.: \(\alpha _i\)-metric graphs: hyperbolicity. In: Preparation (2022–2023)

    Google Scholar 

  21. Dragan, F.F., Ducoffe, G., Guarnera, H.M.: Fast deterministic algorithms for computing all eccentricities in (hyperbolic) Helly graphs. In: Lubiw, A., Salavatipour, M. (eds.) WADS 2021. LNCS, vol. 12808, pp. 300–314. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83508-8_22

    Chapter  MATH  Google Scholar 

  22. Dragan, F.F., Guarnera, H.M.: Eccentricity function in distance-hereditary graphs. Theor. Comput. Sci. 833, 26–40 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dragan, F.F., Guarnera, H.M.: Eccentricity terrain of \(\delta \)-hyperbolic graphs. J. Comput. Syst. Sci. 112, 50–65 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dragan, F.F., Habib, M., Viennot, L.: Revisiting radius, diameter, and all eccentricity computation in graphs through certificates. CoRR, abs/1803.04660 (2018)

    Google Scholar 

  25. Dragan, F.F., Köhler, E., Alrasheed, H.: Eccentricity approximating trees. Discret. Appl. Math. 232, 142–156 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dragan, F.F., Nicolai, F., Brandstädt, A.: LexBFS-orderings and powers of graphs. In: d’Amore, F., Franciosa, P.G., Marchetti-Spaccamela, A. (eds.) WG 1996. LNCS, vol. 1197, pp. 166–180. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62559-3_15

    Chapter  Google Scholar 

  27. Ducoffe, G.: Easy computation of eccentricity approximating trees. DAM 260, 267–271 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Ducoffe, G.: Around the diameter of AT-free graphs. JGT 99(4), 594–614 (2022)

    Google Scholar 

  29. Ducoffe, G.: Beyond Helly graphs: the diameter problem on absolute retracts. In: Kowalik, Ł, Pilipczuk, M., Rzążewski, P. (eds.) WG 2021. LNCS, vol. 12911, pp. 321–335. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86838-3_25

    Chapter  Google Scholar 

  30. Ducoffe, G.: Distance problems within Helly graphs and k-Helly graphs. Theor. Comput. Sci. 946, 113690 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ducoffe, G., Dragan, F.F.: A story of diameter, radius, and (almost) Helly property. Networks 77, 435–453 (2021)

    Article  MathSciNet  Google Scholar 

  32. Howorka, E.: A characterization of distance-hereditary graphs. Quart. J. Math. Oxford Ser. 28, 417–420 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31955-9_3

    Chapter  Google Scholar 

  34. Olariu, S.: A simple linear-time algorithm for computing the center of an interval graph. Int. J. Comput. Math. 34, 121–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Prisner, E.: Eccentricity-approximating trees in chordal graphs. Discret. Math. 220, 263–269 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Roditty, L., Vassilevska Williams, V.: Fast approximation algorithms for the diameter and radius of sparse graphs. In: STOC, pp. 515–524. ACM (2013)

    Google Scholar 

  37. Soltan, V.P., Chepoi, V.D.: Conditions for invariance of set diameters under \(d\)-convexification in a graph. Cybernetics 19, 750–756 (1983). (Russian, English transl.)

    Article  MathSciNet  MATH  Google Scholar 

  38. Weimann, O., Yuster, R.: Approximating the diameter of planar graphs in near linear time. ACM Trans. Algorithms 12(1), 12:1–12:13 (2016)

    Google Scholar 

  39. Yushmanov, S.V., Chepoi, V.: A general method of investigation of metric graph properties related to the eccentricity. In: Mathematical Problems in Cybernetics, vol. 3, pp. 217–232. Nauka, Moscow (1991). (Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Ducoffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dragan, F.F., Ducoffe, G. (2023). \(\alpha _i\)-Metric Graphs: Radius, Diameter and all Eccentricities. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43380-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43379-5

  • Online ISBN: 978-3-031-43380-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics