Skip to main content

Degreewidth: A New Parameter for Solving Problems on Tournaments

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2023)

Abstract

In the paper, we define a new parameter for tournaments called degreewidth which can be seen as a measure of how far is the tournament from being acyclic. The degreewidth of a tournament T denoted by \(\varDelta (T)\) is the minimum value k for which we can find an ordering \(\langle v_1, \dots , v_n \rangle \) of the vertices of T such that every vertex is incident to at most k backward arcs (i.e. an arc \((v_i,v_j)\) such that \(j<i\)). Thus, a tournament is acyclic if and only if its degreewidth is zero. Additionally, the class of sparse tournaments defined by Bessy et al. [ESA 2017] is exactly the class of tournaments with degreewidth one.

We study computational complexity of finding degreewidth. We show it is NP-hard and complement this result with a 3-approximation algorithm. We provide a \(O(n^3)\)-time algorithm to decide if a tournament is sparse, where n is its number of vertices.

Finally, we study classical graph problems Dominating Set and Feedback Vertex Set parameterized by degreewidth. We show the former is fixed-parameter tractable whereas the latter is NP-hard even on sparse tournaments. Additionally, we show polynomial time algorithm for Feedback Arc Set on sparse tournaments.

Sanjukta Roy was affiliated to Faculty of Information Technology, Czech Technical University in Prague when majority of this work was done. Jocelyn Thiebaut was supported by the CTU Global postdoc fellowship program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Not to be confused with sparse tournaments that has an arc between every pair of vertices, hence, is not a sparse graph.

References

  1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allesina, S., Levine, J.M.: A competitive network theory of species diversity. Proc. Natl. Acad. Sci. 108(14), 5638–5642 (2011)

    Article  Google Scholar 

  3. Alon, N.: Ranking tournaments. SIAM J. Discret. Math. 20(1), 137–142 (2006). https://doi.org/10.1137/050623905

    Article  MathSciNet  MATH  Google Scholar 

  4. Bang-Jensen, J., Gutin, G.Z.: Digraphs - Theory, Algorithms and Applications. Springer Monographs in Mathematics, 2nd edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84800-998-1

    Book  MATH  Google Scholar 

  5. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM J. Comput. 27(4), 942–959 (1998). https://doi.org/10.1137/S0097539796305109

    Article  MathSciNet  MATH  Google Scholar 

  6. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short symmetric instances of MAX-3SAT. Electron. Colloquium Comput. Complex. (049) (2003). http://eccc.hpi-web.de/eccc-reports/2003/TR03-049/index.html

  7. Bessy, S., et al.: Packing arc-disjoint cycles in tournaments. In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, 26–30 August 2019, Aachen, Germany. LIPIcs, vol. 138, pp. 27:1–27:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.27

  8. Bessy, S., Bougeret, M., Thiebaut, J.: Triangle packing in (sparse) tournaments: approximation and kernelization. In: Pruhs, K., Sohler, C. (eds.) 25th Annual European Symposium on Algorithms, ESA 2017, 4–6 September 2017, Vienna, Austria. LIPIcs, vol. 87, pp. 14:1–14:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ESA.2017.14

  9. Brandt, F., Fischer, F.: PageRank as a weak tournament solution. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 300–305. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77105-0_30

    Chapter  Google Scholar 

  10. Charbit, P., Thomassé, S., Yeo, A.: The minimum feedback arc set problem is NP-hard for tournaments. Comb. Probab. Comput. 16(1), 1–4 (2007). https://doi.org/10.1017/S0963548306007887

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed feedback vertex set problem. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 177–186 (2008)

    Google Scholar 

  12. Davot, T., Isenmann, L., Roy, S., Thiebaut, J.: DegreeWidth: a new parameter for solving problems on tournaments. CoRR abs/2212.06007 (2022). https://doi.org/10.48550/arXiv.2212.06007

  13. Dechter, R.: Enhancement schemes for constraint processing: backjumping, learning, and cutset decomposition. Artif. Intell. 41(3), 273–312 (1990). https://doi.org/10.1016/0004-3702(90)90046-3

    Article  MathSciNet  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote, P., Remmel, J.B. (eds.) Feasible Mathematics II. Progress in Computer Science and Applied Logic, vol. 13, pp. 219–244. Springer, Boston (1995). https://doi.org/10.1007/978-1-4612-2566-9_7

    Chapter  Google Scholar 

  15. Feige, U.: Faster fast (feedback arc set in tournaments). CoRR abs/0911.5094 (2009). http://arxiv.org/abs/0911.5094

  16. Fradkin, A.O.: Forbidden structures and algorithms in graphs and digraphs. Ph.D. thesis, USA (2011). aAI3463323

    Google Scholar 

  17. Gavril, F.: Some NP-complete problems on graphs. In: Proceedings of the 11th Conference on Information Sciences and Systems. Johns Hopkins University, Baltimore (1977)

    Google Scholar 

  18. Gurski, F., Rehs, C.: Comparing linear width parameters for directed graphs. Theory Comput. Syst. 63(6), 1358–1387 (2019). https://doi.org/10.1007/s00224-019-09919-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J. Comput. 4(1), 77–84 (1975). https://doi.org/10.1137/0204007

    Article  MathSciNet  MATH  Google Scholar 

  20. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, Kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17517-6_3

    Chapter  MATH  Google Scholar 

  21. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Johnson, D.S., Feige, U. (eds.) Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, 11–13 June 2007, pp. 95–103. ACM (2007). https://doi.org/10.1145/1250790.1250806

  22. Laslier, J.F.: Tournament Solutions and Majority Voting, vol. 7. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  23. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM (JACM) 46(6), 787–832 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Thiebaut, J.: Algorithmic and structural results on directed cycles in dense digraphs. (Résultats algorithmiques et structurels sur les cycles orientés dans les digraphes denses). Ph.D. thesis, University of Montpellier, France (2019). https://tel.archives-ouvertes.fr/tel-02491420

  25. van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. Math. Oper. Res. 34(3), 594–620 (2009). https://doi.org/10.1287/moor.1090.0385

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Frédéric Havet for pointing us a counter-example to the polynomial running-time algorithm in [24, Lemma 35.1, p. 97].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Davot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davot, T., Isenmann, L., Roy, S., Thiebaut, J. (2023). Degreewidth: A New Parameter for Solving Problems on Tournaments. In: Paulusma, D., Ries, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2023. Lecture Notes in Computer Science, vol 14093. Springer, Cham. https://doi.org/10.1007/978-3-031-43380-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43380-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43379-5

  • Online ISBN: 978-3-031-43380-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics