Skip to main content

Abstract

The Engineering Data Preparation System (E-DPS) is a tool-chain produced by Siemens Mobility Limited for digital railway scheme design. This paper is concerned with the creation of a tool able to formally verify that the scheme plans follow the design rules required for correct European Train Control System (ETCS) operation. The E-DPS Checker encodes the scheme plan and signalling design rules as an attributed graph and logical constraints over that graph, respectively. Logical constraints are verified by the E-DPS Checker using the satisfiability modulo theories solver Z3. This approach verifies the configuration of ETCS for a particular scheme and reduces the amount of principles testing and manual checking required. The E-DPS Checker is currently being developed to EN50128 basic integrity and has been applied to verify the correctness of a number of real-world scheme plans as part of the development process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The lateral separation part is derived from [2] Subset-036 v3.1.0 Table 1 ‘One Balise and one Antenna Unit’. The other parts are derived from [2] section 5.7.10.

  2. 2.

    This requirement originates from subset-040 (Dimensioning and Engineering rules) [1] section 4.1.1.from the ETCS specification documents.

  3. 3.

    Due to our definition of adjacency (no intermediate balise objects), we do not need a specific ‘end balise’ relation in the formalisation of this design rule.

  4. 4.

    Given an unsatisfiable Boolean propositional formula in conjunctive normal form, a subset of clauses whose conjunction is unsatisfiable is called an unsatisfiable core.

  5. 5.

    In more complex scheme plans, the connection between the violating elements can consist of several edges, in our example it involves only one edge.

  6. 6.

    The following is the configuration of the machine used to run the automated tests: ZBook Fury 15 G7 Mobile Workstation, Microsoft Windows 10 Enterprise OS, x64-based PC, Intel®Core\(^\textrm{TM}\) i7-10850H CPU @ 2.7GHz with 6 cores.

References

  1. Dimensioning and Engineering rules. Technical report. https://www.era.europa.eu/system/files/2023-01/sos3_index013_-_subset-040_v340.pdf

  2. FFFIS for Eurobalise. Technical report. https://www.era.europa.eu/system/files/2023-01/sos3_index009_-_subset-036_v310.pdf

  3. Abo, R., Voisin, L.: Formal implementation of data validation for railway safety-related systems with OVADO. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 221–236. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05032-4_17

    Chapter  Google Scholar 

  4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Technical report, Department of Computer Science, The University of Iowa (2021). https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf

  5. Bayless, S., Bayless, N., Hoos, H., Hu, A.: SAT Modulo monotonic theories. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, no. 1 (2015)

    Google Scholar 

  6. Berger, U., James, P., Lawrence, A., Roggenbach, M., Seisenberger, M.: Verification of the European rail traffic management system in real-time Maude. Sci. Comput. Program. 154, 61–88 (2018)

    Article  Google Scholar 

  7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability - Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336. IOS Press, Amsterdam (2021)

    Google Scholar 

  8. Fantechi, A.: Twenty-five years of formal methods and railways: what next? In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05032-4_13

    Chapter  Google Scholar 

  9. Haxthausen, A.E., Østergaard, P.H.: On the use of static checking in the verification of interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 266–278. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_19

    Chapter  Google Scholar 

  10. Idani, A., Ledru, Y., Ait Wakrime, A., Ben Ayed, R., Bon, P.: Towards a tool-based domain specific approach for railway systems modeling and validation. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 23–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_2

    Chapter  Google Scholar 

  11. Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27(1), 97–109 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krueger, R.A.: Focus Groups: A Practical Guide for Applied Research. Sage Publications, Thousand Oaks (2014)

    Google Scholar 

  13. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the railways (2012)

    Google Scholar 

  14. Luteberget, B.: Automated reasoning for planning railway infrastructure. Ph.D. thesis, Faculty of mathematics and natural sciences, University of Oslo (2019)

    Google Scholar 

  15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  16. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10373-5_13

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Peter Woodbridge, Simon Chadwick and Mark Thomas for providing valuable advice and feedback. Erwin R. Catesbeiana (Jr) enlightened us on the intricacies of inconsistency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Lawrence .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, M. et al. (2023). A Tool-Chain for the Verification of Geographic Scheme Data. In: Milius, B., Collart-Dutilleul, S., Lecomte, T. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2023. Lecture Notes in Computer Science, vol 14198. Springer, Cham. https://doi.org/10.1007/978-3-031-43366-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43366-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43365-8

  • Online ISBN: 978-3-031-43366-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics