Skip to main content

An Automated Precision Spraying Evaluation System

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2023)

Abstract

Data-driven robotic systems are imperative in precision agriculture. Currently, Agri-Robot precision sprayers lack automated methods to assess the efficacy of their spraying. In this paper, images were collected from an RGB camera mounted to an Agri-robot system to locate spray deposits on target weeds or non-target lettuces. We propose an explainable deep learning pipeline to classify and localise spray deposits without using existing manual agricultural methods. We implement a novel stratification and sampling methodology to improve classification results. Spray deposits are identified with over 90% Area Under the Receiver Operating Characteristic and over 50% Intersection over Union for a Weakly Supervised Object Localisation task. This approach utilises near real-time architectures and methods to achieve inference for both classification and localisation in 0.062 s on average.

This work is supported by the UK Engineering and Physical Sciences Research Council [EP/S023917/1]. This work is also supported by Syngenta as the Industrial partner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. John Deere. https://www.deere.com/en/sprayers/see-spray-ultimate/

  2. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018)

    Google Scholar 

  3. Commission, E.: The European green deal. In: European Commission (2019). https://bit.ly/3fje1au

  4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  5. Desai, S., Ramaswamy, H.G.: Ablation-CAM: visual explanations for deep convolutional network via gradient-free localization. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 972–980 (2020). https://doi.org/10.1109/WACV45572.2020.9093360

  6. Draelos, R.L., Carin, L.: Use HiResCAM instead of grad-cam for faithful explanations of convolutional neural networks (2020). https://doi.org/10.48550/ARXIV.2011.08891. https://arxiv.org/abs/2011.08891

  7. Farooque, A.A., et al.: Field evaluation of a deep learning-based smart variable-rate sprayer for targeted application of agrochemicals. Smart Agric. Technol. 3, 100073 (2023). https://www.sciencedirect.com/science/article/pii/S2772375522000387

  8. Fu, H., Zhao, X., Wu, H., Zheng, S., Zheng, K., Zhai, C.: Design and experimental verification of the YOLOv5 model implanted with a transformer module for target-oriented spraying in cabbage farming. Agronomy 12(10) (2022). https://www.mdpi.com/2073-4395/12/10/2551

  9. Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5(2), 1 (2015)

    Article  Google Scholar 

  10. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2018)

    Google Scholar 

  11. Jiang, P.T., Zhang, C.B., Hou, Q., Cheng, M.M., Wei, Y.: LayerCAM: exploring hierarchical class activation maps for localization. IEEE Trans. Image Process. 30, 5875–5888 (2021)

    Article  Google Scholar 

  12. Kim, J., Seol, J., Lee, S., Hong, S.W., Son, H.I.: An intelligent spraying system with deep learning-based semantic segmentation of fruit trees in orchards. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3923–3929 (2020). https://doi.org/10.1109/ICRA40945.2020.9197556

  13. Liu, J., Abbas, I., Noor, R.S.: Development of deep learning-based variable rate agrochemical spraying system for targeted weeds control in strawberry crop. Agronomy 11(8), 1480 (2021)

    Article  Google Scholar 

  14. Liu, L., Liu, Y., He, X., Liu, W.: Precision variable-rate spraying robot by using single 3D lidar in orchards. Agronomy 12(10) (2022). https://www.mdpi.com/2073-4395/12/10/2509

  15. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  16. Muhammad, M.B., Yeasin, M.: Eigen-CAM: class activation map using principal components. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, July 2020. https://doi.org/10.1109/IJCNN48605.2020.9206626

  17. Partel, V., Charan Kakarla, S., Ampatzidis, Y.: Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 157, 339–350 (2019)

    Article  Google Scholar 

  18. Petsiuk, V., Das, A., Saenko, K.: RISE: randomized input sampling for explanation of black-box models (2018). https://arxiv.org/abs/1806.07421

  19. Raja, R., Nguyen, T.T., Slaughter, D.C., Fennimore, S.A.: Real-time weed-crop classification and localisation technique for robotic weed control in lettuce. Biosys. Eng. 192, 257–274 (2020)

    Article  Google Scholar 

  20. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019). https://doi.org/10.1007/s11263-019-01228-7

  21. Srinivas, S., Fleuret, F.: Full-gradient representation for neural network visualization (2019). https://arxiv.org/abs/1905.00780

  22. Wang, B., Yan, Y., Lan, Y., Wang, M., Bian, Z.: Accurate detection and precision spraying of corn and weeds using the improved YOLOv5 model. IEEE Access 11, 29868–29882 (2023). https://doi.org/10.1109/ACCESS.2023.3258439

    Article  Google Scholar 

  23. Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks (2020)

    Google Scholar 

  24. Zheng, K., Zhao, X., Han, C., He, Y., Zhai, C., Zhao, C.: Design and experiment of an automatic row-oriented spraying system based on machine vision for early-stage maize corps. Agriculture 13(3) (2023). https://www.mdpi.com/2077-0472/13/3/691

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rogers, H., De La Iglesia, B., Zebin, T., Cielniak, G., Magri, B. (2023). An Automated Precision Spraying Evaluation System. In: Iida, F., Maiolino, P., Abdulali, A., Wang, M. (eds) Towards Autonomous Robotic Systems. TAROS 2023. Lecture Notes in Computer Science(), vol 14136. Springer, Cham. https://doi.org/10.1007/978-3-031-43360-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43360-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43359-7

  • Online ISBN: 978-3-031-43360-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics