Skip to main content

Design and Kinematic Analysis of a 3D-Printed 3DOF Robotic Manipulandum

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14136))

Included in the following conference series:

Abstract

Robotic manipulanda are often used to investigate human motor control of arm movements, as well as for tasks where haptic feedback is useful, e.g., in computer-aided design and in the teleoperation of robotic arms. Here we present the design and implementation of a small, low-cost, torque controlled 3DOF revolute manipulandum which supports translational movement in three-dimensions. All bespoke structural components are 3D printed and the arm lengths are constructed from carbon fiber tubes, which exhibit high stiffness but are very light, resulting in a design that exhibits a low intrinsic endpoint mass at the handle. We use rare-earth BLDC motors employing built-in low-ratio planetary-gearboxes, so the system is back-drivable and arm endpoint force can be controlled. We provide an analysis and simulation in MATLAB of the arm’s forward and inverse kinematics, as well as its static motor torque and endpoint force relationships. We used a microcontroller to operate the motors over their CAN interfaces. Finally, we demonstrate the use of the manipulandum as a robot for general point-to-point movement tasks using a microcontroller implementation of its inverse kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shadmehr, R., Mussa-Ivaldi, F.A.: Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14(5), 3208–3224 (1994)

    Article  Google Scholar 

  2. Hogan, N., Krebs, H.I.: Interactive robots for neuro-rehabilitation. Restor. Neurol. Neurosci. 22(3–5), 349–358 (2004)

    Google Scholar 

  3. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998)

    Article  Google Scholar 

  4. Howard, I.S., Ingram, J.N., Wolpert, D.M.: A modular planar robotic manipulandum with end-point torque control. J. Neurosci. Methods 181(2), 199–211 (2009). https://doi.org/10.1016/j.jneumeth.2009.05.005

    Article  Google Scholar 

  5. Massie, T.H., Salisbury, J.K.: The phantom haptic interface: a device for probing virtual objects. In: Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, vol. 55, no. 1, pp. 295–300, Chicago, IL (1994)

    Google Scholar 

  6. Van der Linde, R.Q., Lammertse, P., Frederiksen, E., Ruiter, B.: The HapticMaster, a new high-performance haptic interface. In: Proceedings of Eurohaptics, Edinburgh University, pp. 1–5 (2002)

    Google Scholar 

  7. Bartenbach, V., et al.: The biomotionbot: a robotic device for applications in human motor learning and rehabilitation. J. Neurosci. Methods 213(2), 282–297 (2013)

    Article  Google Scholar 

  8. Clavel, R.: Conception d’un robot parallèle rapide à 4 degrés de liberté. In: EPFL (1991)

    Google Scholar 

  9. Grant, D.: Two new commercial haptic rotary controllers. In: Proceedings of Eurohaptics, p. 451. Citeseer (2004)

    Google Scholar 

  10. Demers, J.-G., Boelen, J., Sinclair, I.: Freedom 6s force feedback hand controller. IFAC Proceedings Volumes 31(33), 115–120 (1998)

    Article  Google Scholar 

  11. Salcudean, S.E., Stocco, L.: Isotropy and actuator optimization in haptic interface design. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 1, pp. 763–769. IEEE (2000)

    Google Scholar 

  12. Stocco, L.J., Salcudean, S.E., Sassani, F.: Optimal kinematic design of a haptic pen. IEEE/ASME Trans. Mechatron. 6(3), 210–220 (2001)

    Article  Google Scholar 

  13. Forsslund, J., Yip, M., Sallnäs, E.-L.: Woodenhaptics: a starting kit for crafting force-reflecting spatial haptic devices. In: Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 133–140 (2015)

    Google Scholar 

  14. Hayward, V., Choksi, J., Lanvin, G., Ramstein, C.: Design and multi-objective optimization of a linkage for a haptic interface. In: Lenarčič, J., Ravani, B. (eds.) Advances in Robot Kinematics and Computational Geometry, pp. 359–368. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8348-0_36

  15. Hayward, V., Astley, O.R.: Performance measures for haptic interfaces. In: Giralt, G., Hirzinger, G. (eds.) Robotics research: The Seventh International Symposium, pp. 195–206. Springer, Cham (1996). https://doi.org/10.1007/978-1-4471-1021-7_22

  16. Tan, H.Z., Srinivasan, M.A., Eberman, B., Cheng, B.: Human factors for the design of force-reflecting haptic interfaces. Dyn. Syst. Control 55(1), 353–359 (1994)

    Google Scholar 

  17. Howard, I.S.: Design and prototyping of a low-cost light weight fixed-endpoint orientation planar Cobot. In: 2022 International Conference on System Science and Engineering (ICSSE), pp. 047–054. IEEE (2022)

    Google Scholar 

  18. Di Natale, M., Zeng, H., Giusto, P., Ghosal, A.: Understanding and Using the Controller Area Network Communication Protocol: Theory and Practice. Springer, Cham (2012). https://doi.org/10.1007/978-1-4614-0314-2

  19. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Motion control. Robot. Model. Plann. Control 303–361 (2009)

    Google Scholar 

  20. Lynch, K.M., Park, F.C.: Modern Robotics. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  21. Wannasuphoprasit, W., Gillespie, R.B., Colgate, J.E., Peshkin, M.A.: Cobot control. In: Proceedings of International Conference on Robotics and Automation, vol. 4, pp. 3571–3576. IEEE (1997)

    Google Scholar 

  22. Colgate, J.E., Wannasuphoprasit, W., Peshkin, M.A.: Cobots: robots for collaboration with human operators. In: Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian S. Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Howard, I.S. (2023). Design and Kinematic Analysis of a 3D-Printed 3DOF Robotic Manipulandum. In: Iida, F., Maiolino, P., Abdulali, A., Wang, M. (eds) Towards Autonomous Robotic Systems. TAROS 2023. Lecture Notes in Computer Science(), vol 14136. Springer, Cham. https://doi.org/10.1007/978-3-031-43360-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43360-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43359-7

  • Online ISBN: 978-3-031-43360-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics