Skip to main content

Automating a Telepresence Robot for Human Detection, Tracking, and Following

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2023)

Abstract

The operation of a telepresence robot as a service robot has gained wide attention in robotics. The recent COVID-19 pandemic has boosted its use for medical uses, allowing patients to interact while avoiding the risk of contagion. While telepresence robots are designed to have a human operator that controls them, their sensing and actuation abilities can be used to achieve higher levels of autonomy. One desirable ability, which takes advantage of the mobility of a telepresence robot, is to recognize people and the space in which they operate. With the ultimate objective to assist individuals in office spaces, we propose an approach for rendering a telepresence robot autonomous with real-time, indoor human detection and pose classification, with consequent chaperoning of the human. We validate the approach through a series of experiments involving an Ohmni Telepresence Robot, using a standard camera for vision and an additional Lidar sensor. The evaluation of the robot’s performance and comparison with the state of the art shows promise of the feasibility of using such robots as office assistants.

Partially supported by the German Academic Exchange Service (DAAD) and the Petroleum Technology Development Fund (PTDF) Nigeria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida, L., Menezes, P., Dias, J.: Telepresence social robotics towards co-presence: a review. Appl. Sci. 12(11), 5557 (2022)

    Article  Google Scholar 

  2. Cashmore, M., et al.: ROSPlan: planning in the robot operating system. In: ICAPS, vol. 2015, pp. 333–341 (2015)

    Google Scholar 

  3. Ceballos, N.D.M., Valencia, J.A., Ospina, N.L.: Quantitative performance metrics for mobile robots navigation. In: Barrera, A. (ed.) Mobile Robots Navigation. IntechOpen (2010)

    Google Scholar 

  4. Fitter, N.T., Joung, Y., Hu, Z., Demeter, M., Matarić, M.J.: User interface tradeoffs for remote deictic gesturing. In: IEEE RO-MAN, pp. 1–8 (2019)

    Google Scholar 

  5. Flores-Vázquez, C., Angulo, C., Vallejo-Ramírez, D., Icaza, D., Pulla Galindo, S.: Technical development of the CeCi social robot. Sensors 22(19), 7619 (2022)

    Article  Google Scholar 

  6. Georgievski, I., Jeyakumar, I.H.J., Kale, S.: Designing a system based on robotic assistance for privacy awareness in smart environment. In: IEEE UEMCON, pp. 427–432 (2021)

    Google Scholar 

  7. Gurguze, G., Turkoglu, I.: Energy management techniques in mobile robots. Int. J. Energy Power Eng. 11(10), 1085–1093 (2018)

    Google Scholar 

  8. Hassan, S., Khan, M., Khan, A.: Design and development of human following robot. In: Student Research Paper Conference, Islamabad, July 2015

    Google Scholar 

  9. Ilias, B., Shukor, S., Yaacob, S., Adom, A., Razali, M.: A nurse following robot with high speed kinect sensor. ARPN J. Eng. Appl. Sci. 9(12), 2454–2459 (2014)

    Google Scholar 

  10. Kaldeli, E., Warriach, E.U., Lazovik, A., Aiello, M.: Coordinating the web of services for a smart home. ACM Trans. Web 7(2), 1–40 (2013)

    Article  Google Scholar 

  11. Kirk, D.B., Wen-Mei, W.H.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann, San Francisco (2016)

    Google Scholar 

  12. Kwak, S.S.: The impact of the robot appearance types on social interaction with a robot and service evaluation of a robot. Arch. Des. Res. 27(2), 81–93 (2014)

    MathSciNet  Google Scholar 

  13. Liu, Y., Palmieri, L., Georgievski, I., Aiello, M.: Human-flow-aware long-term mobile robot task planning based on hierarchical reinforcement learning. IEEE Robot. Autom. Lett. 8, 4068–4075 (2023)

    Article  Google Scholar 

  14. Megalingam, R.K., Anandu, R., HemaTejaAnirudhBabu, D., Sriram, G., YashwanthAvvari, V.S.: Implementation of a person following robot in ROS-gazebo platform. In: IEEE ICONAT, pp. 1–5 (2022)

    Google Scholar 

  15. Patoliya, J.J., Mewada, H.K.: Automated tracking and real time following of moving person for robotics applications. J. Autom. Mobile Robot. Intell. Syst. 13, 31–37 (2019)

    Google Scholar 

  16. Pena, P., Albina, T.: Follow Pedro! An infrared-based person-follower using nonlinear optimization. arXiv Preprint 1912.06837 (2019)

    Google Scholar 

  17. Pradeep, B.V., Rahul, E., Bhavani, R.R.: Follow me robot using bluetooth-based position estimation. In: IEEE ICACCI, pp. 584–589 (2017)

    Google Scholar 

  18. Priyandoko, G., Wei, C.K., Achmad, M.S.H.: Human following on ROS framework a mobile robot. Sinergi 22(2), 77–82 (2018)

    Article  Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. arXiv Preprint 1506.02640 (2015)

    Google Scholar 

  20. Sankar, S., Tsai, C.Y.: ROS-based human detection and tracking from a wireless controlled mobile robot using kinect. Appl. Syst. Innov. 2(1), 5 (2019)

    Article  Google Scholar 

  21. Shanee, H.S., Dror, K., Tal, O.G., Yael, E.: The influence of following angle on performance metrics of a human-following robot. In: IEEE RO-MAN, pp. 593–598 (2016)

    Google Scholar 

  22. Shenzhen: YDLIDAR|Focus on lidar sensor solutions (2015). https://www.ydlidar.com/. Accessed 20 Mar 2023

  23. Sonoura, T., Yoshimi, T., Nishiyama, M., Nakamoto, H., Tokura, S., Matsuhira, N.: Person following robot with vision-based and sensor fusion tracking algorithm. In: Zhihui, X. (ed.) Computer Vision. IntechOpen (2008)

    Google Scholar 

  24. Stanford Artificial Intelligence Laboratory: Robotic Operating System (2020). https://www.ros.org

  25. Tomoya, A., Nakayama, S., Hoshina, A., Sugaya, M.: A mobile robot for following, watching and detecting falls for elderly care. Procedia Comput. Sci. 112, 1994–2003 (2017)

    Article  Google Scholar 

  26. Wunderlich, S., Schmölz, J., Kühnlenz, K.: Follow me: a simple approach for person identification and tracking. In: IEEE ISIE, pp. 1609–1614 (2017)

    Google Scholar 

  27. Zand, G., Ren, Y., Arif, A.S.: TiltWalker: operating a telepresence robot with one-hand by tilt controls on a smartphone. Proc. ACM Hum. Comput. Interact. 6(ISS), 381–406 (2022)

    Google Scholar 

  28. Zheng, K., Wu, F., Chen, X.: Laser-based people detection and obstacle avoidance for a hospital transport robot. Sensors 21(3), 961 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasiru Aboki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aboki, N., Georgievski, I., Aiello, M. (2023). Automating a Telepresence Robot for Human Detection, Tracking, and Following. In: Iida, F., Maiolino, P., Abdulali, A., Wang, M. (eds) Towards Autonomous Robotic Systems. TAROS 2023. Lecture Notes in Computer Science(), vol 14136. Springer, Cham. https://doi.org/10.1007/978-3-031-43360-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43360-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43359-7

  • Online ISBN: 978-3-031-43360-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics