Skip to main content

Hemophilia A: Diagnosis and Management

  • Chapter
  • First Online:
Congenital Bleeding Disorders

Abstract

Hemophilia A is an inherited X-linked recessive bleeding disorder that accounts for about 80% of cases of hemophilia, occurs in ~5 and ~20 per 100,000 male births, and is caused by a defect or deficiency in coagulation factor VIII (FVIII). Hemophilia A is caused by a variety of mutations in the FVIII gene, the most common of that is intron 22 inversion, which results in severe hemophilia A. The most frequent bleeding sites in hemophilia A patients are joints and soft tissues. Inhibitor development and viral transmission risk are serious complications that can be fatal. Fresh frozen plasma and cryoprecipitate were previously used to treat hemophilic bleeding. Plasma-derived FVIII concentrates, recombinant FVIII concentrates, extended half-life concentrates, and non-factor replacement agents are now available. These non-factor drugs can be given subcutaneously instead of intravenously. Gene therapy is the only curative option, and it has recently been used successfully in selected hemophilia A patients. Current therapeutic options and supportive care significantly improve hemophilia A patients’ quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gitschier J, Wood WI, Goralka TM, Wion KL, Chen EY, Eaton DH, et al. Characterization of the human factor VIII gene. Nature. 1984;312:326–30.

    Article  CAS  PubMed  Google Scholar 

  2. Bell B, Canty D, Audet M. Hemophilia: an updated review. Pediatr Rev/Am Acade Pediatr. 1995;16(8):290–8.

    Article  CAS  Google Scholar 

  3. Anwarul M, Yakub C. A review on hemophilia in children. Bangladesh J Child Health 2013;37(1):27–40.

    Google Scholar 

  4. Madhok R, York J, Sturrock RD. Haemophilic arthritis. Ann Rheum Dis. 1991;50(8):588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luck JV Jr, Silva M, Rodriguez-Merchan CE, Ghalambor N, Zahiri CA, Finn RS. Hemophilic arthropathy. J Am Acad Orthop Surg. 2004;12(4):234–45.

    Article  PubMed  Google Scholar 

  6. Srivastava A, Brewer A, Mauser-Bunschoten E, Key N, Kitchen S, Llinas A, et al. Guidelines for the management of hemophilia. Haemophilia. 2013;19(1):e1–e47. Moser KA. Chromogenic factor VIII activity assay. Am J Hematol 2014;89(7):781-4

    Article  CAS  PubMed  Google Scholar 

  7. Marlar RA, Strandberg K, Shima M, Adcock DM. Clinical utility and impact of the use of the chromogenic vs one-stage factor activity assays in haemophilia a and B. Eur J Haematol. 2020;104(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  8. Potgieter JJ, Damgaard M, Hillarp A. One-stage vs. chromogenic assays in haemophilia a. Eur J Haematol. 2015;94(Suppl. 77):38–44.

    Article  CAS  PubMed  Google Scholar 

  9. Bowen D. Haemophilia a and haemophilia B: molecular insights. J Clin Pathol. 2002;55(2):127.

    CAS  Google Scholar 

  10. Keeney S, Mitchell M, Goodeve A. The molecular analysis of haemophilia a: a guideline from the UK haemophilia Centre doctors’ organization haemophilia genetics laboratory network. Haemophilia. 2005;11(4):387–97.

    Article  CAS  PubMed  Google Scholar 

  11. Bihoreau N, Pin S, Kersabiec AM, Vidot F, Fontaine-Aupart MP. Copper-atom identification in the active and inactive forms of plasma-derived FVIII and recombinant FVIII-ΔII. Eur J Biochem. 1994;222(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  12. Tagliavacca L, Moon N, Dunham WR, Kaufman RJ. Identification and functional requirement of cu (I) and its ligands within coagulation factor VIII. J Biol Chem. 1997;272(43):27428–34.

    Article  CAS  PubMed  Google Scholar 

  13. O’brien S, Mayewski P, Meeker L, Meese D, Twickler M, Whitlow S. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science. 1995;270(5244):1962–4.

    Article  Google Scholar 

  14. Bajaj MS, Birktoft JJ, Steer SA, Bajaj SP. Structure and biology of tissue factor pathway inhibitor. Thromb Haemost. 2001;86(4):959–72.

    CAS  PubMed  Google Scholar 

  15. Macedo-Ribeiro S, Bode W, Huber R, Quinn-Allen MA, Kim SW, Ortel TL, et al. Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature. 1999;402(6760):434–9.

    Article  CAS  PubMed  Google Scholar 

  16. Church WR, Jernigan RL, Toole J, Hewick RM, Knopf J, Knutson GJ, et al. Coagulation factors V and VIII and ceruloplasmin constitute a family of structurally related proteins. Proc Natl Acad Sci. 1984;81(22):6934–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pratt KP, Shen BW, Takeshima K, Davie EW, Fujikawa K, Stoddard BL. Structure of the C2 domain of human factor VIII at 1.5 Å resolution. Nature. 1999;402(6760):439–42.

    Article  CAS  PubMed  Google Scholar 

  18. McMullen BA, Fujikawa K, Davie EW, Hedner U, Ezban M. Locations of disulfide bonds and free cysteines in the heavy and light chains of recombinant human factor VIII (antihemophilic factor a). Protein Sci. 1995;4(4):740–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saenko EL, Shima M, Rajalakshmi K, Scandella D. A role for the C2 domain of factor VIII in binding to von Willebrand factor. J Biol Chem. 1994;269(15):11601–5.

    Article  CAS  PubMed  Google Scholar 

  20. Nogami K, Tanaka I, Shibata M, Yoshioka A, Shima M, Hosokawa K, Nagata M, Koide T, Saenko EL. Factor VIII C2 domain contains the thrombin-binding site responsible for thrombin-catalyzed cleavage at Arg1689. Journal of Biological Chemistry. 2000;275(33):25774–80.

    Google Scholar 

  21. Nogami K, Shima M, Hosokawa K, Suzuki T, Koide T, Saenko EL, Scandella D, Shibata M, Kamisue S, Tanaka I, Yoshioka A. Role of factor VIII C2 domain in factor VIII binding to factor Xa. Journal of Biological Chemistry. 1999;274(43):31000–7.

    Google Scholar 

  22. Thorelli E, Kaufman RJ, Dahlbäck B. The C-terminal region of the factor V B-domain is crucial for the anticoagulant activity of factor V. J Biol Chem. 1998;273(26):16140–5.

    Article  CAS  PubMed  Google Scholar 

  23. Swieringa F, Kuijpers MJ, Lamers MM, Van der Meijden PE, Heemskerk JW. Rate-limiting roles of the tenase complex of factors VIII and IX in platelet procoagulant activity and formation of platelet-fibrin thrombi under flow. Haematologica. 2015;100(6):748–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mauser-Bunschoten EP. Symptomatic carriers of hemophilia. Treatment Hemophilia. 2008;46:1–9. World Federation of Hemophilia, 2008:No:46. https://www1.wfh.org/publication/files/pdf-1202.pdf

    Google Scholar 

  25. Soucie JM, Evatt B, Jackson D. Occurrence of hemophilia in the United States. Am J Hematol. 1998;59(4):288–94.

    Article  CAS  PubMed  Google Scholar 

  26. Manno CS. Difficult pediatric diagnoses: bruising and bleeding. Pediatr Clin N Am. 1991;38(3):637–55.

    Article  CAS  Google Scholar 

  27. Mauser-Bunschoten EP. Symptomatic carriers of hemophilia. World Feder Hemophilia. 2008;46:2–3.

    Google Scholar 

  28. White G, Rosendaal F, Aledort L, Lusher J, Rothschild C, Ingerslev J. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the international society on thrombosis and Haemostasis. Thromb Haemost. 2001;85:560.

    Article  CAS  PubMed  Google Scholar 

  29. Antonarakis SE, Rossiter J, Young M, Horst J, De Moerloose P, Sommer S, et al. Factor VIII gene inversions in severe hemophilia a: results of an international consortium study. Blood. 1995;86(6):2206–12.

    Article  CAS  PubMed  Google Scholar 

  30. Plug I, Mauser-Bunschoten EP, Bröcker-Vriends AH, van Amstel HKP, van der Bom JG, van Diemen-Homan JE, et al. Bleeding in carriers of hemophilia. Blood. 2006;108(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  31. Khair K, Liesner R. Bruising and bleeding in infants and children—a practical approach. Br J Haematol. 2006;133(3):221–31.

    Article  PubMed  Google Scholar 

  32. Kasper CK. Hereditary plasma clotting factor disorders and their management. Haemophilia Oxford. 2000;6:13–27.

    Article  Google Scholar 

  33. Jover Cerveró A, Poveda Roda R, Bagán JV, Jiménez SY. Dental treatment of patients with coagulation factor alterations: an update. Med Oral Patol Oral Cirugía Bucal. 2007;12(5):380–7.

    Google Scholar 

  34. Pezeshkpoor B, Oldenburg J, Pavlova A. Insights into the Molecular Genetic of Hemophilia A and Hemophilia B: The Relevance of Genetic Testing in Routine Clinical Practice. Hämostaseologie. 2022;42(6):390–9.

    Google Scholar 

  35. Margaglione M, Castaman G, Morfini M, Rocino A, Santagostino E, Tagariello G, et al. The Italian AICE-genetics hemophilia a database: results and correlation with clinical phenotype. Haematologica. 2008;93(5):722–8.

    Article  CAS  PubMed  Google Scholar 

  36. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, et al. The human gene mutation database: 2008 update. Genome Med. 2009;1(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Salviato R, Belvini D, Radossi P, Tagariello G. Factor VIII gene intron 1 inversion: lower than expected prevalence in Italian haemophiliac severe patients. Haemophilia. 2004;10(2):194–6.

    Article  CAS  PubMed  Google Scholar 

  38. Schröder J, El-Maarri O, Schwaab R, Müller C, Oldenburg J. Factor VIII intron-1 inversion: frequency and inhibitor prevalence. J Thromb Haemost. 2006;4(5):1141–3.

    Article  PubMed  Google Scholar 

  39. Tantawy AA. Molecular genetics of hemophilia a: clinical perspectives. Egypt J Med Hum Genet. 2010;11(2):105–14.

    Article  CAS  Google Scholar 

  40. Chen YC, Hu SH, Cheng SN, Chao TY. Genetic analysis of haemophilia a in Taiwan. Haemophilia. 2010;16(3):538–44.

    Article  CAS  PubMed  Google Scholar 

  41. Lakich D, Kazazian HH, Antonarakis SE, Gitschier J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia a. Nat Genet. 1993;5(3):236–41.

    Article  CAS  PubMed  Google Scholar 

  42. Levinson B, Kenwrick S, Lakich D, Hammonds G, Gitschier J. A transcribed gene in an intron of the human factor VIII gene. Genomics. 1990;7(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  43. Naylor JA, Buck D, Green P, Williamson H, Bentley D, Gianneill F. Investigation of the factor VIII intron 22 repeated region (int22h) and the associated inversion junctions. Hum Mol Genet. 1995;4(7):1217–24.

    Article  CAS  PubMed  Google Scholar 

  44. Gitschier J. Molecular genetics of hemophilia a. Schweiz Med Wochenschr. 1989;119(39):1329–31.

    CAS  PubMed  Google Scholar 

  45. Kemball-Cook G, Tuddenham EG. The factor VIII mutation database on the world wide web: the haemophilia a mutation, search, test and resource site HAMSTeRS update (version 3.0). Nucleic Acids Res. 1997;25(1):128–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goodeve AC, Peake IR. The molecular basis of hemophilia a: genotype-phenotype relationships and inhibitor development. In: Seminars in thrombosis and hemostasis, vol. 29; 2003. p. 023–30. Copyright© 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

    Google Scholar 

  47. El-Maarri O, Herbiniaux U, Graw J, Schröder J, Terzic A, Watzka M, et al. Analysis of mRNA in hemophilia a patients with undetectable mutations reveals normal splicing in the factor VIII gene. J Thromb Haemost. 2005;3(2):332–9.

    Article  CAS  PubMed  Google Scholar 

  48. Chandler WL, Ferrell C, Lee J, Tun T, Kha H. Comparison of three methods for measuring factor VIII levels in plasma. Am J Clin Pathol. 2003;120(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kitchen S, McCraw A, Echenagucia M. Diagnosis of hemophilia and other bleeding disorders. A laboratory manual. World Feder Hemophilia; 2000.

    Google Scholar 

  50. Hillarp A, Bowyer A, Ezban M, Persson P, Kitchen S. Measuring FVIII activity of glycopegylated recombinant factor VIII, N8-GP, with commercially available one-stage clotting and chromogenic assay kits: a two-Centre study. Haemophilia. 2017;23(3):458–65.

    Article  CAS  PubMed  Google Scholar 

  51. Di Paola J, Smith M, Klamroth R, Mannucci P, Kollmer C, Feingold J, et al. ReFacto® and Advate®: a single-dose, randomized, two-period crossover pharmacokinetics study in subjects with haemophilia a. Haemophilia. 2007;13(2):124–30.

    Article  PubMed  Google Scholar 

  52. Mei B, Pan C, Jiang H, Tjandra H, Strauss J, Chen Y, et al. Rational design of a fully active, long-acting PEGylated factor VIII for hemophilia a treatment. Blood. 2010;116(2):270–9.

    Article  CAS  PubMed  Google Scholar 

  53. Peyvandi F, Oldenburg J, Friedman K. A critical appraisal of one-stage and chromogenic assays of factor VIII activity. J Thromb Haemost. 2016;14(2):248–61.

    Article  CAS  PubMed  Google Scholar 

  54. Reding M, Ng H, Poulsen LH, Eyster M, Pabinger I, Shin HJ, et al. Safety and efficacy of BAY 94-9027, a prolonged-half-life factor VIII. J Thromb Haemost. 2017;15(3):411–9.

    Article  CAS  PubMed  Google Scholar 

  55. Powell JS, Josephson NC, Quon D, Ragni MV, Cheng G, Li E, et al. Safety and prolonged activity of recombinant factor VIII fc fusion protein in hemophilia a patients. Blood. 2012;119(13):3031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Turecek P, Bossard M, Graninger M, Gritsch H, Höllriegl W, Kaliwoda M, et al. BAX 855, a PEGylated rFVIII product with prolonged half-life. Hamostaseologie. 2012;32(1):S29–38.

    CAS  PubMed  Google Scholar 

  57. Zhang Y, Limsakun T, Bensen-Kennedy DM, Veldman A, Yao Z. Population pharmacokinetic modeling and simulation of recombinant single-chain factor VIII (r VIII-singlechain) in patients with hemophilia a. Am Soc Hematol; 2014;124(21):2814

    Google Scholar 

  58. Evatt BL. The tragic history of AIDS in the hemophilia population, 1982–1984. J Thromb Haemost. 2006;4:2295–301.

    Article  CAS  PubMed  Google Scholar 

  59. Ma AD, Roberts HR, Escobar MA. Hemophilia and hemostasis: a case-based approach to management. John Wiley & Sons; 2012.

    Book  Google Scholar 

  60. O'grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52(9):e162–e93.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Franchini M, Lippi G. The use of desmopressin in acquired haemophilia a: a systematic review. Blood Transfus. 2011;9(4):377.

    PubMed  PubMed Central  Google Scholar 

  62. Kirkiz S, Kaya Z, Gönen S, Yağcı M, Koçak U. Occurence of familial Mediterranean fever in haemophilia patients. Haemophilia. 2022; https://doi.org/10.1111/hae.14698.

  63. Aledort L, Haschmeyer RH, Pettersson H. A longitudinal study of orthopaedic outcomes for severe factor-VIII-deficient haemophiliacs. J Intern Med. 1994;236(4):391–9.

    Article  CAS  PubMed  Google Scholar 

  64. Kavaklı K. New treatment modalities in hemophilia. Trends Pediatr. 2022;3(1):1–4.

    Article  Google Scholar 

  65. Knobe K, Berntorp E. Haemophilia and joint disease: pathophysiology, evaluation and management. J Comorb. 2011;1(1):51–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rodriguez-Merchan E. Articular bleeding (hemarthrosis) in hemophilia. In: An orthopedist’s point of view. 2nd ed. Montréal: The World Federation of Hemophilia, Schulman S; 2008. p. 1–5.

    Google Scholar 

  67. Rodriguez-Merchan E. Ankle surgery in haemophilia with special emphasis on arthroscopic debridement. Haemophilia. 2008;14(5):913–9.

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez-Merchan E. Orthopaedic surgery in persons with haemophilia. Thromb Haemost. 2003;89(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  69. Kavaklı K, Aktuğlu G, Kemahlı S, Başlar Z, Ertem M, Balkan C, Ar C. Inhibitor screening for patients with hemophilia in Turkey. Turk J Haematol. 2006;23(1):25–32.

    PubMed  Google Scholar 

  70. Yazdani MR, Kassaian N, Ataei B, Nokhodian Z, Adibi P. Hepatitis C virus infection in patients with hemophilia in Isfahan. Iran Int J Prev Med. 2012;3(Suppl. 1):S89–93.

    PubMed  Google Scholar 

  71. Al-Kubaisy W, Al-Naib K, Habib M. Prevalence of HCV/HIV co-infection among haemophilia patients in Baghdad. East Mediterr Health J. 2006;12(3/4):264.

    CAS  PubMed  Google Scholar 

  72. Fulcher CA, de Graaf MS, Zimmerman TS. FVIII inhibitor IgG subclass and FVIII polypeptide specificity determined by immunoblotting. Blood. 1987;69(5):1475–80.

    Article  CAS  PubMed  Google Scholar 

  73. Lollar P. Pathogenic antibodies to coagulation factors. Part one: factor VIII and factor IX. J Thromb Haemost. 2004;2(7):1082–95.

    Article  CAS  PubMed  Google Scholar 

  74. Witmer C, Young G. Factor VIII inhibitors in hemophilia a: rationale and latest evidence. Therap Adv Hematol. 2013;4(1):59–72.

    Article  CAS  Google Scholar 

  75. Wintrobe MM. Wintrobe's clinical hematology. Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  76. Wight J, Paisley S. The epidemiology of inhibitors in haemophilia a: a systematic review. Haemophilia. 2003;9(4):418–35.

    Article  CAS  PubMed  Google Scholar 

  77. Astermark J, editor. Overview of inhibitors. Seminars in hematology. Elsevier; 2006.

    Google Scholar 

  78. DiMichele DM. Inhibitors in haemophilia: a primer. Haemophilia. 2000;6:38–40.

    Article  PubMed  Google Scholar 

  79. Owaidah T, Al Momen A, Alzahrani H, Almusa A, Alkasim F, Tarawah A, et al. The prevalence of factor VIII and IX inhibitors among Saudi patients with hemophilia: results from the Saudi national hemophilia screening program. Medicine. 2017;96(2):e5456.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hoots W, Shapiro A. Factor VIII and factor IX inhibitors in patients with hemophilia. Waltham, MA: UpToDate; 2016.

    Google Scholar 

  81. Miller C, Platt S, Rice A, Kelly F, Soucie J. Validation of Nijmegen–Bethesda assay modifications to allow inhibitor measurement during replacement therapy and facilitate inhibitor surveillance. J Thromb Haemost. 2012;10(6):1055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duncan E, Collecutt M, Street A. Nijmegen-Bethesda assay to measure factor VIII inhibitors. Haemostasis: Methods Mol Biol. 2013;992:321–33.

    Google Scholar 

  83. Guh S, Grosse S, McAlister S, Kessler C, Soucie J. Healthcare expenditures for males with haemophilia and employer-sponsored insurance in the United States, 2008. Haemophilia. 2012;18(2):268–75.

    Article  CAS  PubMed  Google Scholar 

  84. Guh S, Grosse S, McAlister S, Kessler C, Soucie J. Health care expenditures for Medicaid-covered males with haemophilia in the United States, 2008. Haemophilia. 2012;18(2):276–83.

    Article  CAS  PubMed  Google Scholar 

  85. Walsh CE, Soucie JM, Miller CH. Impact of inhibitors on hemophilia a mortality in the United States. Am J Hematol. 2015;90(5):400–5.

    Article  CAS  PubMed  Google Scholar 

  86. Berntorp E, Shapiro A, Astermark J, Blanchette V, Collins P, Dimichele D, et al. Inhibitor treatment in haemophilias a and B: summary statement for the 2006 international consensus conference. Haemophilia. 2006;12(s6):1–7.

    Article  PubMed  Google Scholar 

  87. Matsushita T, Suzuki N, Nagao A, Nagae C, Yamaguchi-Suita H, Kyogoku Y, Ioka A, Nogami K. Akatsuki study: a prospective, multicentre, phase IV study evaluating the safety of emicizumab under and immediately after immune tolerance induction therapy in persons with congenital hemophilia a with factor VIII inhibitors. BMJ Open. 2022;12(3):e057018.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Abildgaard CF, Penner JA, Watson-Williams EJ. Anti-inhibitor coagulant complex (autoplex) for treatment of factor VIII inhibitors in hemophilia. Blood. 1980;56(6):978–84.

    Article  CAS  PubMed  Google Scholar 

  89. Shapiro AD, Mitchell IS, Nasr S. The future of bypassing agents for hemophilia with inhibitors in the era of novel agents. J Thromb Haemost. 2018;16(12):2362–74.

    Article  CAS  PubMed  Google Scholar 

  90. Tjonnfjord G, Holme PA. Factor eight inhibitor bypass activity (FEIBA) in the management of bleeds in hemophilia patients with high-titer inhibitors. Vasc Health Risk Manag. 2007;3(4):527.

    PubMed  PubMed Central  Google Scholar 

  91. Nogami K, Shima M. New therapies using non-factor products for patients with hemophilia and inhibitors. Blood. 2019;133(5):399–406.

    Article  CAS  PubMed  Google Scholar 

  92. Kaya Z, Orhan Ö, Turanlı S, Yenicesu İ, Koçak Ü, Gürsel T. Successful total hip replacement with sequential administration of bypassing agents in an adolescent boy with hemophilia a and high inhibitor titers. Blood Coagul Fibrinolysis. 2017;28(5):419–22.

    Article  PubMed  Google Scholar 

  93. Scully C, Dios PD, Kumar N. Special care in dentistry: handbook of oral healthcare. Elsevier Health Sciences; 2006.

    Google Scholar 

  94. Scully C, Dios PD, Giangrande P. Oral care for people with hemophilia or a hereditary bleeding tendency. In: Treatment of hemophilia monograph series. Montreal: The World Federation of Hemophilia; 2008. p. 10–1.

    Google Scholar 

  95. Wang L, Zoppè M, Hackeng TM, Griffin JH, Lee K-F, Verma IM. A factor IX-deficient mouse model for hemophilia B gene therapy. Proc Natl Acad Sci. 1997;94(21):11563–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nathwani AC, Reiss UM, Tuddenham EG, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371:1994–2004.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Murphy SL, High KA. Gene therapy for haemophilia. Br J Haematol. 2008;140(5):479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dwarki VJ, Belloni P, Nijjar T, Smith J, Couto L, Rabier M, et al. Gene therapy for hemophilia a: production of therapeutic levels of human factor VIII in vivo in mice. Proc Natl Acad Sci. 1995;92(4):1023–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hoeben RC, Van der Jagt R, Schoute F, van Tilburg NH, Verbeet MP, Briet E, et al. Expression of functional factor VIII in primary human skin fibroblasts after retrovirus-mediated gene transfer. J Biol Chem. 1990;265(13):7318–23.

    Article  CAS  PubMed  Google Scholar 

  100. Fakharzadeh SS, Zhang Y, Sarkar R, Kazazian HH. Correction of the coagulation defect in hemophilia a mice through factor VIII expression in skin. Blood. 2000;95(9):2799–805.

    Article  CAS  PubMed  Google Scholar 

  101. Hao Q-L, Malik P, Salazar R, Tang H, Gordon EM, Kohn DB. Expression of biologically active human factor IX in human hematopoietic cells after retroviral vector-mediated gene transduction. Hum Gene Ther. 1995;6(7):873–80.

    Article  CAS  PubMed  Google Scholar 

  102. Swystun LL, Lillicrap D. Gene therapy for coagulation disorders. Circ Res. 2016;118(9):1443–52.

    Article  CAS  PubMed  Google Scholar 

  103. Shi Q, Fahs SA, Wilcox DA, Kuether EL, Morateck PA, Mareno N, et al. Syngeneic transplantation of hematopoietic stem cells that are genetically modified to express factor VIII in platelets restores hemostasis to hemophilia a mice with preexisting FVIII immunity. Blood. 2008;112(7):2713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rea CJ, Aledort L, Rangarajan S. Haemophilia: a race for cure. Hematol Transfus Int J. 2017;4(5):00094.

    Article  Google Scholar 

  105. Ponder KP. Gene therapy for hemophilia. Curr Opin Hematol. 2006;13(5):301–7.

    Article  CAS  PubMed  Google Scholar 

  106. Chuah MK, Collen D, VandenDriessche T. Gene therapy for hemophilia: hopes and hurdles. Crit Rev Oncol Hematol. 1998;28(3):153–71.

    Article  CAS  PubMed  Google Scholar 

  107. Morfini M. A new era in the hemophilia treatment: lights and shadows! J Hematol Transfus. 2016;4(3):1051.

    Google Scholar 

  108. High KA, Anguela XM. Adeno-associated viral vectors for the treatment of hemophilia. Hum Mol Genet. 2016;25(R1):R36–41

    Google Scholar 

  109. Finn JD, Ozelo MC, Sabatino DE, Franck HW, Merricks EP, Crudele JM, et al. Eradication of neutralizing antibodies to factor VIII in canine hemophilia a after liver gene therapy. Blood. 2010;116(26):5842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Artenstein AW, Opal SM. Proprotein convertases in health and disease. N Engl J Med. 2011;365(26):2507–18.

    Article  CAS  PubMed  Google Scholar 

  111. Siner JI, Samelson-Jones BJ, Crudele JM, French RA, Lee BJ, Zhou S, et al. Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models. JCI Insight. 2016;1(16):e8937. https://doi.org/10.1172/jci.insight.89371.

  112. Powell JS, Ragni MV, White GC, Lusher JM, Hillman-Wiseman C, Moon TE, et al. Phase 1 trial of FVIII gene transfer for severe hemophilia a using a retroviral construct administered by peripheral intravenous infusion. Blood. 2003;102(6):2038–45.

    Article  CAS  PubMed  Google Scholar 

  113. Miao CH. Hemophilia a gene therapy via intraosseous delivery of factor VIII-lentiviral vectors. Thromb J. 2016;14(1):41.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kavaklı K, Antmen B, Okan V, Şahin F, Aytaç S, Balkan C, Berber E, Kaya Z, Küpesiz A, Zülfikar B. Gene therapy in haemophilia: literature review and regional perspectives for Turkey. Ther Adv Hematol. 2022;13:20406207221104591.

    Article  PubMed  PubMed Central  Google Scholar 

  115. James PD, Raut S, Rivard GE, Poon M-C, Warner M, McKenna S, et al. Aminoglycoside suppression of nonsense mutations in severe hemophilia. Blood. 2005;106(9):3043–8.

    Article  CAS  PubMed  Google Scholar 

  116. Chao H, Mansfield SG, Bartel RC, Hiriyanna S, Mitchell LG, Garcia-Blanco MA, et al. Phenotype correction of hemophilia a mice by spliceosome-mediated RNA trans-splicing. Nat Med. 2003;9(8):1015–9.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40–6.

    Google Scholar 

  118. Nguyen TH, Anegon I. Successful correction of hemophilia by CRISPR/Cas9 genome editing in vivo: delivery vector and immune responses are the key to success. EMBO Mol Med. 2016;8(5):439–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We appreciate Professor Edward Tuddenham for his valuable comments that significantly improved the quality of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy M. Adcock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaya, Z., Safarian, N., Pezeshkpoor, B., Adcock, D.M. (2023). Hemophilia A: Diagnosis and Management. In: Dorgalaleh, A. (eds) Congenital Bleeding Disorders . Springer, Cham. https://doi.org/10.1007/978-3-031-43156-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43156-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43155-5

  • Online ISBN: 978-3-031-43156-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics