Skip to main content

Analysis of Probability of Detection in Relay Assisted WBAN

  • Conference paper
  • First Online:
Communication, Networks and Computing (CNC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1893))

Included in the following conference series:

  • 137 Accesses

Abstract

This paper examines the working of a Cognitive Radio based Wireless Body Area Network (WBAN) based on Probability of Detection (PD) as a performance metric. The variation in values of Probability of Detection (PD) with variable factors such as Dynamic Threshold, Noise uncertainty & sampling time (NS) for zero relay & multi relay system respectively has been conducted using MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reggio, G., Leotta, M., Cerioli, M., Spalazzese, R., Alkhabbas, F.: What are IoT systems for real? An experts’ survey on software engineering aspects. Internet Things 12, 100313 (2020)

    Article  Google Scholar 

  2. Nižetić, S., Šolić, P., González-de, D.L.D.I., Patrono, L.: Internet of Things (IoT): opportunities, issues and challenges towards a smart and sustainable future. J. Clean. Prod. 274, 122877 (2020)

    Article  Google Scholar 

  3. Poongodi, T., Rathee, A., Indrakumari, R., Suresh, P.: IoT sensing capabilities: sensor deployment and node discovery, wearable sensors, wireless body area network (WBAN), data acquisition. In: Peng, SL., Pal, S., Huang, L. (eds.) Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. Intelligent Systems Reference Library, vol. 174, pp. 127–151. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33596-0_5

  4. Wang, J., et al.: A logistic mapping-based encryption scheme for wireless body area networks. Futur. Gener. Comput. Syst. 110, 57–67 (2020)

    Article  Google Scholar 

  5. Arfaoui, A., Boudia, O.R.M., Kribeche, A., Senouci, S.M., Hamdi, M.: Context-aware access control and anonymous authentication in WBAN. Comput. Secur. 88, 101496 (2020)

    Article  Google Scholar 

  6. AkkaÅŸ, M.A., Sokullu, R., Cetin, H.E.: Healthcare and patient monitoring using IoT. Internet Things 11, 100173 (2020)

    Article  Google Scholar 

  7. Roy, S., Chowdhury, C.: Remote health monitoring protocols for IoT-enabled healthcare infrastructure. In: Healthcare Paradigms in the Internet of Things Ecosystem, pp. 163–188. Academic Press (2021)

    Google Scholar 

  8. Ahad, A., Tahir, M., Aman Sheikh, M., Ahmed, K.I., Mughees, A., Numani, A.: Technologies trend towards 5G network for smart health-care using IoT: a review. Sensors 20(14), 4047 (2020)

    Google Scholar 

  9. Chakraborty, C., Gupta, B., Ghosh, S.K.: A review on telemedicine-based WBAN framework for patient monitoring. Telemed. e-Health 19(8), 619–626 (2020)

    Article  Google Scholar 

  10. Taleb, H., Nasser, A., Andrieux, G., Charara, N., Motta Cruz, E.: Wireless technologies, medical applications and future challenges in WBAN: a survey. Wirel. Netw. 27(8), 5271–5295 (2021)

    Google Scholar 

  11. Asam, M., et al.: Challenges in wireless body area network. Int. J. Adv. Comput. Sci. Appl. 10(11) (2019)

    Google Scholar 

  12. Khan, M.D., et al.: Energy harvested and cooperative enabled efficient routing protocol (EHCRP) for IoT-WBAN. Sensors 20(21), 6267 (2020)

    Google Scholar 

  13. Xu, Z., Xu, C., Chen, H., Yang, F.: A lightweight anonymous mutual authentication and key agreement scheme for WBAN. Concurr. Comput. Pract. Exp. 31(14), e5295 (2019)

    Google Scholar 

  14. Nadeem, A., Khan, M., Han, K.: Non-cooperative spectrum sensing in context of primary user detection: a review. IETE Tech. Rev. 34(2), 188–200 (2017)

    Article  Google Scholar 

  15. Motta, M.: A survey on data and decision fusion strategies on spectrum sensing in cognitive radio networks. Int. J. Adv. Res. Comput. Commun. Eng. 3(07), 7510–7518 (2014)

    Google Scholar 

  16. Sharma, V., Joshi, S.: A Literature review on spectrum sensing in cognitive radio applications. In: Second International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 883–893 (2018)

    Google Scholar 

  17. Arjoune, Y., Kaabouch, N.: A comprehensive survey on spectrum sensing in cognitive radio networks: recent advances, new challenges, and future research directions. Sensors 19(1), 126 (2019)

    Google Scholar 

  18. Ramani, V., Sharma, S.K.: Cognitive radios: a survey on spectrum sensing, security and spectrum handoff. China Commun. 14(11), 185–208 (2017)

    Article  Google Scholar 

  19. Kakalou, I., Papadopoulou, D., Xifilidis, T., Psannis, K.E., Siakavara, K., Ishibashi, Y.: A survey on spectrum sensing algorithms for cognitive radio networks. In: 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4. IEEE (2018)

    Google Scholar 

  20. Syed, T.S., Safdar, G.A.: History-assisted energy-efficient spectrum sensing for infrastructure-based cognitive radio networks. IEEE Trans. Veh. Technol. 66(3), 2462–2473 (2016)

    Article  Google Scholar 

  21. Tandra, R., Sahai, A.: SNR walls for signal detection. IEEE J. Sel. Top. Signal Process. 2(1), 4–17 (2008)

    Article  Google Scholar 

  22. Yao, J., Jin, M., Guo, Q., Li, Y., Xi, J.: Effective energy detection for IoT systems against noise uncertainty at low SNR. IEEE Internet Things J. 6(4), 6165–6176 (2018)

    Article  Google Scholar 

  23. Lorincz, J., Ramljak, I., Begušić, D.: A review of the noise uncertainty impact on energy detection with different OFDM system designs. Comput. Commun. 148, 185–207 (2019)

    Article  Google Scholar 

  24. Kumar, A., Thakur, P., Pandit, S., Singh, G.: Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: an energy detection approach. Wirel. Netw. 25(7), 3917–3931 (2019)

    Article  Google Scholar 

  25. Mahendru, G., Shukla, A.K.: Effect of dynamic threshold on sensing duration for robust detection in cognitive radio systems for low SNR scenarios. In: 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) (Fall), pp. 1–5. IEEE (2017)

    Google Scholar 

  26. Yousaf, S., Javaid, N., Khan, Z.A., Qasim, U., Imran, M., Iftikhar, M.: Incremental relay based cooperative communication in wireless body area networks. Procedia Comput. Sci. 52, 552–559 (2015)

    Google Scholar 

  27. Paul, P.M., Babu, A.V.: Performance evaluation of cooperative communication in WBANs with maximal ratio combining. In: 2015 International Conference on Computing and Network Communications (CoCoNet), pp. 627–632. IEEE (2015)

    Google Scholar 

  28. Alkhayyat, A., Sadkhan, S.B., Abbasi, Q.H.: Multiple traffics support in wireless body area network over cognitive cooperative communication. In: 2019 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE), pp. 199–203. IEEE (2019)

    Google Scholar 

  29. Ayed, S., Chaari, L., Fares, A.: A survey on trust management for WBAN: investigations and future directions. Sensors 20(21), 6041 (2020)

    Google Scholar 

  30. Sodagari, S., Bozorgchami, B., Aghvami, H.: Technologies and challenges for cognitive radio enabled medical wireless body area networks. IEEE Access 6, 29567–29586 (2018)

    Article  Google Scholar 

  31. Hasan, K., Biswas, K., Ahmed, K., Nafi, N.S., Islam, M.S.: A comprehensive review of wireless body area network. J. Netw. Comput. Appl. 143, 178–198 (2019)

    Article  Google Scholar 

  32. Gupta, S.H., Devarajan, N.: Performance exploration of on-body WBAN using CM3A-IEEE 802.15. 6 channel model. J. Ambient Intell. Humaniz. Comput. 1–12 (2020)

    Google Scholar 

  33. Kaushik, M., Gupta, S.H., Balyan, V.: An approach to optimize performance of CM3A cooperative WBAN operating in UWB. Sustain. Comput. Inform. Syst. 30, 100523 (2021)

    Google Scholar 

  34. Akyildiz, I.F., Lo, B.F., Balakrishnan, R.: Cooperative spectrum sensing in cognitive radio networks: a survey. Phys. Commun. 4(1), 40–62 (2011)

    Article  Google Scholar 

  35. Mahendru, G., Shukla, A., Banerjee, P.: A novel mathematical model for energy detection based spectrum sensing in cognitive radio networks. Wirel. Pers. Commun. 110(3), 1237–1249 (2020)

    Article  Google Scholar 

  36. KKorumilli, C., Gadde, C., Hemalatha, I.: Performance analysis of energy detection algorithm in cognitive radio. Int. J. Eng. Res. Appl. 2(4), 1004–1009 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sindhu Hak Gupta or Jitendra Singh Jadon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rafiqi, H., Gupta, S.H., Jadon, J.S. (2023). Analysis of Probability of Detection in Relay Assisted WBAN. In: Tomar, R.S., et al. Communication, Networks and Computing. CNC 2022. Communications in Computer and Information Science, vol 1893. Springer, Cham. https://doi.org/10.1007/978-3-031-43140-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43140-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43139-5

  • Online ISBN: 978-3-031-43140-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics