Skip to main content

Digit Recognition Using Spiking Neural Networks on FPGA

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Abstract

This paper presents the results of our first assessment on the emulation of spiking neural networks (SNNs) on Field Programmable Gated Arrays (FPGAs). Three fundamental modules are designed to obtain a fully functional neural network. First, a module that provides the simulation of a single neuron’s properties, characteristics, and behavior using an accurate but, at the same time, a computationally efficient mathematical model is designed. Second, a communication or transmission system called Address Event Representation (AER) is developed to manage the neural network’s information flow between the neurons. Third, a training algorithm - Spike-Timing Dependent Plasticity (STDP), is designed to provide functionality to the neural network. This modular approach provides the necessary flexibility and scalability for simulating various SNNs and the different numbers of neurons. The modules have been implemented using multiple combinational blocks and flip-flops; The network description is performed using Very High-Speed Integrated Circuit Hardware Description Language (VHDL) in the Xilinx Vivado simulator. The SNN model for digit recognition is implemented and emulated on the Basys3 FPGA development board to demonstrate the accuracy of the model’s operation.

Supported by organization “Dataninja” (Trustworthy AI for Seamless Problem Solving: Next-Generation Intelligence Joins Robust Data Analysis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeiffer, M., Pfeil, T.: Deep learning with spiking neurons: opportunities and challenges. Front. Neurosci. 12, 774 (2018)

    Article  Google Scholar 

  2. Furukawa, S., Middlebrooks, J.C.: Cortical representation of auditory space: information-bearing features of spike patterns. J. Neurophysiol. 87(4), 1749–1762 (2002)

    Article  Google Scholar 

  3. Chakraborty, I., Jaiswal, A., Saha, A., Gupta, S., Roy, K.: Pathways to efficient neuromorphic computing with non-volatile memory technologies. Appl. Phys. Rev. 7(2), 021308 (2020)

    Article  Google Scholar 

  4. Sanaullah, Koravuna, S., Rückert, U., Jungeblut, T.: SNNs model analyzing and visualizing experimentation using RAVSim. In: Iliadis, L., Jayne, C., Tefas, A., Pimenidis, E. (eds.) Engineering Applications of Neural Networks. EANN 2022. Communications in Computer and Information Science, vol. 1600, pp. 40–51. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08223-8_4

  5. Ahmadi, M., Sharifi, A., Hassantabar, S., Enayati, S.: QAIS-DSNN: tumor area segmentation of MRI image with optimized quantum matched-filter technique and deep spiking neural network. BioMed. Res. Int. 2021, 6653879 (2021)

    Google Scholar 

  6. Loiselle, S., Rouat, J., Pressnitzer, D., Thorpe, S.: Exploration of rank order coding with spiking neural networks for speech recognition. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, vol. 4, pp. 2076–2080. IEEE (2005)

    Google Scholar 

  7. Pearson, M.J., et al.: Implementing spiking neural networks for real-time signal-processing and control applications: a model-validated FPGA approach. IEEE Trans. Neural Netw. 18(5), 1472–1487 (2007)

    Article  Google Scholar 

  8. Hagras, H., Pounds-Cornish, A., Colley, M., Callaghan, V., Clarke, G.: Evolving spiking neural network controllers for autonomous robots. Proceed. IEEE Int. Conf. Robot. Autom. 5, 4620–4626 (2004)

    Google Scholar 

  9. Yang, S., et al.: Real-time neuromorphic system for large-scale conductance-based spiking neural networks. IEEE Trans. Cybern. 49(7), 2490–2503 (2018)

    Article  Google Scholar 

  10. Kasabov, N.: To spike or not to spike: a probabilistic spiking neuron model. Neural Netw. 23(1), 16–19 (2010)

    Article  Google Scholar 

  11. Caporale, N., Dan, Y.: Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008)

    Article  Google Scholar 

  12. Lillicrap, T.P., Santoro, A.: Backpropagation through time and the brain. Curr. Opin. Neurobiol. 55, 82–89 (2019)

    Article  Google Scholar 

  13. Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., Tang, H.: Feedforward categorization on AER motion events using cortex-like features in a spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 1963–1978 (2014)

    Article  MathSciNet  Google Scholar 

  14. Schuman, C.D., et al.: A survey of neuromorphic computing and neural networks in hardware. arXiv preprint arXiv:1705.06963 (2017)

  15. Yang, J.Q., et al.: Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv. Mater. 32(52), 2003610 (2020)

    Article  Google Scholar 

  16. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc. IEEE 102(5), 652–665 (2014)

    Article  Google Scholar 

  17. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)

    Article  Google Scholar 

  18. Schmitt, S., et al.: Neuromorphic hardware in the loop: training a deep spiking network on the brainscales Wafer-scale system. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2227–2234. IEEE (2017)

    Google Scholar 

  19. Akopyan, F., et al.: TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015)

    Article  Google Scholar 

  20. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  21. Cassidy, A., Andreou, A.G.: Dynamical digital silicon neurons. In: IEEE Biomedical Circuits and Systems (2009)

    Google Scholar 

  22. Basys 3 Artix-7 FPGA Board Academic. https://shop.trenz-electronic.de/en/26083-Basys-3-Artix-7-FPGA-Board-Academic. Accessed 16 Mar 2023

Download references

Acknowledgement

This research was supported by the research training group “Dataninja” (Trustworthy AI for Seamless Problem Solving: Next-Generation Intelligence Joins Robust Data Analysis), funded by the German federal state of North Rhine-Westphalia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shamini Koravuna or Ulrich Rückert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koravuna, S., Sanaullah, Jungeblut, T., Rückert, U. (2023). Digit Recognition Using Spiking Neural Networks on FPGA. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14134. Springer, Cham. https://doi.org/10.1007/978-3-031-43085-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43085-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43084-8

  • Online ISBN: 978-3-031-43085-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics