Skip to main content

Measuring Stimulus-Related Redundant and Synergistic Functional Connectivity with Single Cell Resolution in Auditory Cortex

  • Conference paper
  • First Online:
Brain Informatics (BI 2023)

Abstract

Measures of functional connectivity have played a central role in advancing our understanding of how information is communicated within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites. However, recent research has highlighted the potential importance of also identifying synergistic connectivity-that is, connectivity that gives rise to information not contained in either site alone. Here, we measured redundant and synergistic functional connectivity with individual-neuron resolution in the primary auditory cortex of the mouse during a perceptual task. Specifically, we identified pairs of neurons that exhibited directed functional connectivity between them, as measured using Granger Causality. We then used Partial Information Decomposition to quantify the amount of redundant and synergystic information carried by these neurons about auditory stimuli. Our findings revealed that functionally connected pairs carry proportionally more redundancy and less synergy than unconnected pairs, suggesting that their functional connectivity is primarily redundant in nature. Furthermore, we observe that the proportion of redundancy is higher for correct than for incorrect behavioral choices, supporting the notion that redundant connectivity is beneficial for behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Averbeck, B.B., Latham, P.E., Pouget, A.: Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006)

    Article  Google Scholar 

  2. Bell, A.J.: The co-information lattice. In: 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), pp. 921–926 (2003)

    Google Scholar 

  3. Bertschinger, N., Rauh, J., Olbrich, E., Jost, J., Ay, N.: Quantifying unique information. Entropy 16(4), 2161–2183 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34(4), 537–541 (1995)

    Article  Google Scholar 

  5. Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G.L., Hagmann, P., Corbetta, M.: Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J. Neurosci. 33(27), 11239–11252 (2013)

    Article  Google Scholar 

  6. Engel, A.K., Gerloff, C., Hilgetag, C.C., Nolte, G.: Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 80(4), 867–886 (2013)

    Article  Google Scholar 

  7. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102(27), 9673–9678 (2005)

    Article  Google Scholar 

  8. Francis, N.A., Mukherjee, S., Koçillari, L., Panzeri, S., Babadi, B., Kanold, P.O.: Sequential transmission of task-relevant information in cortical neuronal networks. Cell Rep. 39(9), 110878 (2022)

    Article  Google Scholar 

  9. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003)

    Article  Google Scholar 

  10. Griffith, V., Koch, C.: Quantifying synergistic mutual information. In: Prokopenko, M. (ed.) Guided Self-Organization: Inception. ECC, vol. 9, pp. 159–190. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53734-9_6

    Chapter  Google Scholar 

  11. van den Heuvel, M.P., Hulshoff Pol, H.E.: Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20(8), 519–534 (2010)

    Article  Google Scholar 

  12. Honey, C.J., et al.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106(6), 2035–2040 (2009)

    Article  Google Scholar 

  13. Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8(4), 194–208 (1999)

    Article  Google Scholar 

  14. Luppi, A.I., et al.: A synergistic core for human brain evolution and cognition. Nat. Neurosci. 25(6), 771–782 (2022)

    Article  Google Scholar 

  15. Magri, C., Whittingstall, K., Singh, V., Logothetis, N.K., Panzeri, S.: A toolbox for the fast information analysis of multiple-site LFP, EEG and spike train recordings. BMC Neurosci. 10, 1–24 (2009)

    Article  Google Scholar 

  16. Makkeh, A., Theis, D.O., Vicente, R.: BROJA-2PID: a robust estimator for bivariate partial information decomposition. Entropy 20(4), 271 (2018)

    Article  Google Scholar 

  17. McGill, W.J.: Multivariate information transmission. Psychometrika 19, 97–116 (1954)

    Article  MATH  Google Scholar 

  18. Nigam, S., Pojoga, S., Dragoi, V.: Synergistic coding of visual information in columnar networks. Neuron 104(2), 402–411 (2019)

    Article  Google Scholar 

  19. Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.: Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115(10), 2292–2307 (2004)

    Article  Google Scholar 

  20. Panzeri, S., Harvey, C.D., Piasini, E., Latham, P.E., Fellin, T.: Cracking the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron 93(3), 491–507 (2017)

    Article  Google Scholar 

  21. Panzeri, S., Moroni, M., Safaai, H., Harvey, C.D.: The structures and functions of correlations in neural population codes. Nat. Rev. Neurosci. 23(9), 551–567 (2022)

    Article  Google Scholar 

  22. Panzeri, S., Senatore, R., Montemurro, M.A., Petersen, R.S.: Correcting for the sampling bias problem in spike train information measures. J. Neurophysiol. 98(3), 1064–1072 (2007)

    Article  Google Scholar 

  23. Pica, G., et al.: Quantifying how much sensory information in a neural code is relevant for behavior. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), pp. 3686–3696 (2017)

    Google Scholar 

  24. Quian Quiroga, R., Panzeri, S.: Extracting information from neuronal populations: information theory and decoding approaches. Nat. Rev. Neurosci. 10(3), 173–185 (2009)

    Article  Google Scholar 

  25. Schneidman, E., Bialek, W., Berry, M.J.: Synergy, redundancy, and independence in population codes. J. Neurosci. 23(37), 11539–11553 (2003)

    Article  Google Scholar 

  26. Seth, A.K., Barrett, A.B., Barnett, L.: Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35(8), 3293–3297 (2015)

    Article  Google Scholar 

  27. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sheikhattar, A., et al.: Extracting neuronal functional network dynamics via adaptive Granger causality analysis. Proc. Natl. Acad. Sci. U.S.A. 115(17), E3869–E3878 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sporns, O.: The complex brain: connectivity, dynamics, information. Trends Cogn. Sci. 26(12), 1066–1067 (2022)

    Article  Google Scholar 

  30. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. U.S.A. 91(11), 5033–5037 (1994)

    Article  Google Scholar 

  31. Valente, M., et al.: Correlations enhance the behavioral readout of neural population activity in association cortex. Nat. Neurosci. 24(7), 975–986 (2021)

    Article  Google Scholar 

  32. Varley, T.F., Sporns, O., Schaffelhofer, S., Scherberger, H., Dann, B.: Information-processing dynamics in neural networks of macaque cerebral cortex reflect cognitive state and behavior. Proc. Natl. Acad. Sci. U.S.A. 120(2), e22076771, 20 (2023)

    Google Scholar 

  33. Williams, P.L., Beer, R.D.: Nonnegative decomposition of multivariate information. arXiv preprint arXiv:1004.2515 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loren Koçillari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koçillari, L. et al. (2023). Measuring Stimulus-Related Redundant and Synergistic Functional Connectivity with Single Cell Resolution in Auditory Cortex. In: Liu, F., Zhang, Y., Kuai, H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43075-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43074-9

  • Online ISBN: 978-3-031-43075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics