Skip to main content

Variability of Non-parametric HRF in Interconnectedness and Its Association in Deriving Resting State Network

  • Conference paper
  • First Online:
Brain Informatics (BI 2023)

Abstract

Blood Oxygen Level-Dependent (BOLD) time course in functional magnetic resonance imaging (fMRI) is modeled as the response of the hemodynamic response function (HRF) excited by an activity-inducing signal. Variability of the HRF across the brain influences functional connectivity (FC) estimates and some approaches have been attempted to separate the HRF and activity-inducing signal from the observed BOLD signal as a blind separation problem. In this work, an approach based on homomorphic filtering is proposed to estimate a non-parametric representation of HRF in resting state fMRI. Voxel-wise and region-wise variations of correlation of the estimated HRF (both the parametric and non-parametric representation) are analyzed in different functional networks. Principal component analysis of the correlation matrix using the estimated HRF is used to analyze the interconnectedness. HRF shows higher variability for the non-parametric representation over the parametric representation. Further, the contribution of the estimated HRF is then studied in producing resting-state networks using the dictionary learning framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://openneuro.org/datasets/ds000030/versions/00016.

  2. 2.

    http://www.fil.ion.ucl.ac.uk/spm/.

References

  1. Aggarwal, P., Gupta, A., Garg, A.: Joint estimation of hemodynamic response function and voxel activation in functional MRI data. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 142–149. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_18

    Chapter  Google Scholar 

  2. Bießmann, F., Murayama, Y., Logothetis, N.K., Müller, K.R., Meinecke, F.C.: Improved decoding of neural activity from fMRI signals using non-separable spatiotemporal deconvolutions. Neuroimage 61(4), 1031–1042 (2012)

    Article  Google Scholar 

  3. Biswal, B.B., Kannurpatti, S.S., Rypma, B.: Hemodynamic scaling of fMRI-BOLD signal: validation of low-frequency spectral amplitude as a scalability factor. Magn. Reson. Imaging 25(10), 1358–1369 (2007)

    Article  Google Scholar 

  4. Boynton, G.M., Engel, S.A., Glover, G.H., Heeger, D.J.: Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16(13), 4207–4221 (1996)

    Article  Google Scholar 

  5. Cherkaoui, H., Moreau, T., Halimi, A., Leroy, C., Ciuciu, P.: Multivariate semi-blind deconvolution of fMRI time series. Neuroimage 241, 118418 (2021)

    Google Scholar 

  6. Das, S., Sao, A.K., Biswal, B.: Precise estimation of resting state functional connectivity using empirical mode decomposition. In: Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N. (eds.) BI 2020. LNCS (LNAI), vol. 12241, pp. 75–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59277-6_7

    Chapter  Google Scholar 

  7. Das, S.K., Sao, A.K., Biswal, B.: Estimation of spontaneous neuronal activity using homomorphic filtering. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 615–624. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_58

    Chapter  Google Scholar 

  8. Deshpande, G., Sathian, K., Hu, X.: Effect of hemodynamic variability on granger causality analysis of fMRI. Neuroimage 52(3), 884–896 (2010)

    Article  Google Scholar 

  9. Glover, G.H.: Deconvolution of impulse response in event-related bold fMRI. Neuroimage 9(4), 416–429 (1999)

    Article  Google Scholar 

  10. Greve, D.N., Brown, G.G., Mueller, B.A., Glover, G., Liu, T.T.: A survey of the sources of noise in fMRI. Psychometrika 78(3), 396–416 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Handwerker, D.A., Ollinger, J.M., D’Esposito, M.: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21(4), 1639–1651 (2004)

    Article  Google Scholar 

  12. Karahanoğlu, F., Caballero-Gaudes, C., Lazeyras, F., Van De Ville, D.: Total activation: fMRI deconvolution through spatio-temporal regularization. Neuroimage 73, 121–134 (2013)

    Article  Google Scholar 

  13. Liu, X., Gerraty, R.T., Grinband, J., Parker, D., Razlighi, Q.R.: Brain atrophy can introduce age-related differences in bold response. Hum. Brain Mapp. 38(7), 3402–3414 (2017)

    Google Scholar 

  14. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11(1) (2010)

    Google Scholar 

  15. Mensch, A., Varoquaux, G., Thirion, B.: Compressed online dictionary learning for fast resting-state fMRI decomposition. In: Proceedings of 13th International Symposium on Biomedical Imaging (ISBI), pp. 1282–1285. IEEE (2016)

    Google Scholar 

  16. Rangaprakash, D., Tadayonnejad, R., Deshpande, G., O’Neill, J., Feusner, J.D.: fMRI hemodynamic response function (HRF) as a novel marker of brain function: applications for understanding obsessive-compulsive disorder pathology and treatment response. Brain Imaging Behav. 15(3), 1622–1640 (2021)

    Article  Google Scholar 

  17. Rangaprakash, D., Wu, G., Marinazzo, D., Hu, X., Deshpande, G.: Hemodynamic response function HRF variability confounds resting-state fMRI functional connectivity. Magn. Reson. Med. 80(4), 1697–1713 (2018)

    Article  Google Scholar 

  18. Sreenivasan, K.R., Havlicek, M., Deshpande, G.: Nonparametric hemodynamic deconvolution of fMRI using homomorphic filtering. IEEE Trans. Med. Imaging 34(5), 1155–1163 (2014)

    Article  Google Scholar 

  19. Wu, G., Liao, W., Stramaglia, S., Ding, J., Chen, H., Marinazzo, D.: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med. Image Anal. 17(3), 365–374 (2013)

    Article  Google Scholar 

  20. Yan, W., Rangaprakash, D., Deshpande, G.: Aberrant hemodynamic responses in autism: implications for resting state fMRI functional connectivity studies. NeuroImage: Clin. 19, 320–330 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukesh Kumar Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, S.K., Jain, P., Sao, A.K., Biswal, B. (2023). Variability of Non-parametric HRF in Interconnectedness and Its Association in Deriving Resting State Network. In: Liu, F., Zhang, Y., Kuai, H., Stephen, E.P., Wang, H. (eds) Brain Informatics. BI 2023. Lecture Notes in Computer Science(), vol 13974. Springer, Cham. https://doi.org/10.1007/978-3-031-43075-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43075-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43074-9

  • Online ISBN: 978-3-031-43075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics