Skip to main content

Macrolide Use in Chronic Obstructive Pulmonary Disease

  • Chapter
  • First Online:
Macrolides as Immunomodulatory Agents

Part of the book series: Progress in Inflammation Research ((PIR,volume 92))

  • 122 Accesses

Abstract

Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory airway disease characterized by non-reversible airflow limitation and chronic respiratory symptoms. Symptoms may periodically worsen during events called acute exacerbations (AECOPD), which are associated with increased airway inflammation. AECOPD are the main drivers of poor disease outcomes, making their prevention and effective treatment key elements of COPD care. Because a significant proportion of events have an infectious trigger, antibiotics remain a mainstay of exacerbation management. Particularly as prophylaxis, macrolides have been associated with greater benefit compared with other antibiotic classes, possibly due to their additive immunomodulatory actions. However, treatment failures are frequent, the effectivity of long-term administration is unclear, and there is concern for the risk of adverse events and bacterial resistance. Presumably, patients with frequent and bacteria-associated exacerbations benefit most. Yet, a better characterization of the responding disease traits is vital, both for prophylaxis and treatment of exacerbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agusti A, James CH. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 2019;381(13):1248–56.

    Article  CAS  PubMed  Google Scholar 

  2. Quaderi SA, Hurst JR. The unmet global burden of COPD. Glob Heal Epidemiol Genomics. 2018;3:9–11.

    Google Scholar 

  3. Abbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1204–22.

    Article  Google Scholar 

  4. World Health Organization. Global health estimates: the top 10 causes of death [Internet]. 2019 [cited 2022 Jun 2]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

  5. Zou J, Sun T, Song X, Liu YM, Lei F, Chen MM, et al. Distributions and trends of the global burden of COPD attributable to risk factors by SDI, age, and sex from 1990 to 2019: a systematic analysis of GBD 2019 data. Respir Res [Internet]. 2022;23(1, 1):–17. Available from: https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-022-02011-y

  6. David B, Bafadhel M, Koenderman L, De Soyza A. Eosinophilic inflammation in COPD: from an inflammatory marker to a treatable trait [internet]. Vol. 76, Thorax. BMJ Publishing Group Ltd; 2021 [cited 2022 Sep 9]. p. 188–95. Available from: https://thorax.bmj.com/content/76/2/188.

  7. Tanabe N, Vasilescu DM, Kirby M, Coxson HO, Verleden SE, Vanaudenaerde BM, et al. Analysis of airway pathology in COPD using a combination of computed tomography and histology. :1–10. Available from: https://doi.org/10.1183/13993003.01245-2017.

  8. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: 2022 Report 2022.

    Google Scholar 

  9. Rothnie KJ, Müllerová H, Smeeth L, Quint JK. Natural history of chronic obstructive pulmonary disease exacerbations in a general practice-based population with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018;198(4):464–71.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Donaldson GC, Hurst JR, Smith CJ, Hubbard RB, Wedzicha JA. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest. 2010;137(5):1091–7.

    Article  PubMed  Google Scholar 

  11. Bafadhel M, McKenna S, Terry S, Mistry V, Reid C, Haldar P, et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med [Internet]. 2011 Sep 15 [cited 2021 Feb 4];184(6):662–71. Available from: http://www.atsjournals.org/doi/abs/10.1164/rccm.201104-0597OC

  12. Sethi S, Evans N, Grant BJB, Murphy TF. New Strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med [Internet]. 2002 Aug 15 [cited 2022 Aug 29];347(7):465–71. Available from: https://www.nejm.org/doi/10.1056/NEJMoa012561

  13. Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355.

    Article  CAS  PubMed  Google Scholar 

  14. Burr LD, Rogers GB, Chen ACH, Hamilton BR, Pool GF, Taylor SL, et al. Macrolide treatment inhibits pseudomonas aeruginosa quorum sensing in non-cystic fibrosis bronchiectasis: An analysis from the bronchiectasis and low-dose erythromycin study trial. Ann Am Thorac Soc [Internet]. 2016 Oct 1 [cited 2022 Sep 3];13(10):1697–703. Available from: www.atsjournals.org

  15. Polverino E, Dimakou K, Hurst J, Martinez-Garcia MA, Miravitlles M, Paggiaro P, et al. The overlap between bronchiectasis and chronic airway diseases: state of the art and future directions. Eur Respir J [Internet]. 2018 Sep 1 [cited 2022 Sep 9];52(3):1800328. Available from: https://erj.ersjournals.com/content/52/3/1800328

  16. Wang Z, Locantore N, Haldar K, Ramsheh MY, Beech AS, Ma W, et al. Inflammatory endotype-associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis [Internet]. Vol. 203, American Journal of Respiratory and Critical Care Medicine. 2021. 1488–1502 p. Available from: https://doi.org/10.1164/rccm.202009-3448OC.

  17. Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med [Internet]. 2008 Nov 27 [cited 2022 Aug 29];359(22):2355–65. Available from: https://www.nejm.org/doi/full/10.1056/nejmra0800353

  18. Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J [Internet]. 2019 Aug 1 [cited 2022 Aug 29];54(2). Available from: https://erj.ersjournals.com/content/54/2/1900651

  19. Contoli M, Pauletti A, Rossi MR, Spanevello A, Casolari P, Marcellini A, et al. Long-term effects of inhaled corticosteroids on sputum bacterial and viral loads in COPD. Eur Respir J [Internet]. 2017 Oct 1 [cited 2022 Aug 29];50(4). Available from: https://erj.ersjournals.com/content/50/4/1700451

  20. Parnham MJ, Haber VE, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther [Internet]. 2014;143(2):225–45. https://doi.org/10.1016/j.pharmthera.2014.03.003.

    Article  CAS  PubMed  Google Scholar 

  21. Slater M, Torr E, Harrison T, Forrester D, Knox A, Shaw D, et al. The differential effects of azithromycin on the airway epithelium in vitro and in vivo. Physiol Rep. 2016;4(18):1–15.

    Article  Google Scholar 

  22. Stellari FF, Sala A, Donofrio G, Ruscitti F, Caruso P, Topini TM, et al. Azithromycin inhibits nuclear factor-KB activation during lung inflammation : an in vivo imaging study. Pharmacol Res Perspect. 2014;2(5):1–12.

    Article  Google Scholar 

  23. Haydar D, Cory TJ, Birket SE, Brian S, Pennypacker KR, Sinai AP, et al. Azithromycin polarizes macrophages to an M2 phenotype via inhibition of the STAT1 and NF- κ B signaling pathways. J Immunol. 2019;203(4):1021–30.

    Article  CAS  PubMed  Google Scholar 

  24. Huckle AW, Fairclough LC, Ma IT. Prophylactic antibiotic use in copd and the potential anti-inflammatory activities of antibiotics. Respir Care. 2018;63(5):609–19.

    Article  PubMed  Google Scholar 

  25. Zimmermann P, Ziesenitz VC, Curtis N, Ritz N. The immunomodulatory effects of macrolides-a systematic review of the underlying mechanisms. Front Immunol [Internet]. 2018 Mar 13;9(302) Available from: https://pubmed.ncbi.nlm.nih.gov/29593707

  26. Bystrzycka W, Manda-handzlik A, Sieczkowska S, Moskalik A, Demkow U, Ciepiela O. Azithromycin and chloramphenicol diminish neutrophil extracellular traps (NETs) release. Int J Mol Sci. 2017;18(12):1–9.

    Article  Google Scholar 

  27. Barnes PJ. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov [Internet]. 2013 Jun 14 [cited 2022 Aug 24];12(7):543–59. Available from: https://www.nature.com/articles/nrd4025

  28. Gyselinck I, Janssens W, Verhamme P, Vos R. Rationale for azithromycin in COVID-19: an overview of existing evidence. BMJ Open Respir Res. 2021;8(1):1–10.

    Google Scholar 

  29. Popp M, Stegemann M, Riemer M, Metzendorf MI, Romero CS, Mikolajewska A, et al. Antibiotics for the treatment of COVID-19. Cochrane Database Syst Rev [Internet] 2021 Oct 22 [cited 2022 Aug 30];2021(10). Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD015025/full

  30. Gyselinck I, Liesenborghs L, Belmans A, Engelen MM, Betrains A, Van Thillo Q, et al. Azithromycin for treatment of hospitalised COVID-19 patients: a randomised, multicentre, open-label clinical trial (DAWn-AZITHRO). ERJ Open Res [Internet] 2022 Jan 1 [cited 2022 Aug 30];8(1). Available from: https://openres.ersjournals.com/content/8/1/00610-2021

  31. Vollenweider DJ, Frei A, Steurer-Stey CA, Garcia-Aymerich J, Puhan MA. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2018;2018(10):CD010257.

    PubMed Central  Google Scholar 

  32. Bafadhel M, McKenna S, Terry S, Mistry V, Pancholi M, Venge P, et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease. [Internet]. 2012 Dec 14 [cited 2022 Sep 8];186(1):48–55. Available from: https://doi.org/10.1164/rccm201108-1553OC.; www.controlled-trials.com

  33. Jacobs DM, Pandit U, Sethi S. Acute exacerbations in chronic obstructive pulmonary disease: should we use antibiotics and if so, which ones? [Internet]. Vol. 32, Current opinion in infectious diseases. Lippincott Williams and Wilkins; 2019 [cited 2022 Sep 5]. p. 143–151. Available from: https://journals-lww-com.kuleuven.e-bronnen.be/co-infectiousdiseases/Fulltext/2019/04000/Acute_exacerbations_in_chronic_obstructive.10.aspx

  34. Hoult G, Gillespie D, Wilkinson TMA, Thomas M, Francis NA. Biomarkers to guide the use of antibiotics for acute exacerbations of COPD (AECOPD): a systematic review and meta-analysis. BMC Pulm Med [Internet] 2022 May 13 [cited 2022 Sep 5];22(1):1–16. Available from: https://bmcpulmmed.biomedcentral.com/articles/10.1186/s12890-022-01958-4

  35. National Institute for Health and Clinical Excellence. Chronic obstructive pulmonary disease (acute exacerbation): antimicrobial prescribing. Natl Clin Guidel Cent. 2018;December

    Google Scholar 

  36. Wedzicha JA, Miravitlles M, Hurst JR, Calverley PMA, Albert RK, Anzueto A, et al. Management of COPD exacerbations: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J [Internet]. 2017;50(4) https://doi.org/10.1183/13993003.00791-2016.

  37. Bafadhel M, McKenna S, Terry S, Mistry V, Pancholi M, Venge P, et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am J Respir Crit Care Med. 2012;186(1):48–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang HL, Tan M, Qiu AM, Tao Z, Wang CH. Antibiotics for treatment of acute exacerbation of chronic obstructive pulmonary disease: a network meta-analysis. BMC Pulm Med [Internet]. 2017 Dec 12 [cited 2022 Aug 24];17(1):1–11. Available from: https://bmcpulmmed.biomedcentral.com/articles/10.1186/s12890-017-0541-0

  39. Dimopoulos G, Siempos IP, Korbila KG, Manta, Falagas ME. Comparison of first-line with second-line antibiotics for acute exacerbations of chronic bronchitis* A metaanalysis of randomized controlled trials. Chest [Internet]. [cited 2022 Aug 24];132:447–55. Available from: www.chestjournal.org

  40. Siempos II, Dimopoulos G, Korbila IP, Manta K, Falagas ME. Macrolides, quinolones and amoxicillin/clavulanate for chronic bronchitis: a meta-analysis. Eur Respir J [Internet] 2007 Jun 1 [cited 2022 Sep 8];29(6):1127–1137. Available from: https://erj.ersjournals.com/content/29/6/1127.

  41. Garin N, Genné D, Carballo S, Chuard C, Eich G, Hugli O, et al. β-Lactam monotherapy vs β-lactam–macrolide combination treatment in moderately severe community-acquired pneumonia: a randomized noninferiority trial. JAMA Intern Med [Internet] 2014 Dec 1 [cited 2022 Sep 8];174(12):1894–1901. Available from: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/1910547

  42. Nie W, Li B, Xiu Q. β-Lactam/macrolide dual therapy versus β-lactam monotherapy for the treatment of community-acquired pneumonia in adults: a systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2014 Jun 1 [cited 2022 Sep 8];69(6):1441–6. Available from: https://academic.oup.com/jac/article/69/6/1441/835189

  43. Kiser TH, Reynolds PM, Moss M, Burnham EL, Ho PM, Vandivier RW. Impact of macrolide antibiotics on hospital readmissions and other clinically important outcomes in critically Ill patients with acute exacerbations of chronic obstructive pulmonary disease: a propensity score–matched cohort study. Pharmacotherapy [Internet]. 2019 Mar 1 [cited 2022 Aug 24];39(3):242. Available from: /pmc/articles/PMC6445270/.

    Google Scholar 

  44. König R, Cao X, Oswald M, Forstner C, Rohde G, Rupp J, et al. Macrolide combination therapy for patients hospitalised with community-acquired pneumonia? An individualised approach supported by machine learning. Eur Respir J [Internet]. 2019;54(6) Available from::1900824. https://doi.org/10.1183/13993003.00824-2019.

    Article  CAS  PubMed  Google Scholar 

  45. Vermeersch K, Gabrivska M, Aumann J, Demedts IK, Corhay JL, Marchand E, et al. Azithromycin during acute chronic obstructive pulmonary disease exacerbations requiring hospitalization (BACE). A multicenter, randomized, double-blind, placebo-controlled trial. Am J Respir Crit Care Med. 2019;200(7):857–68.

    Article  CAS  PubMed  Google Scholar 

  46. Vermeersch K, Belmans A, Bogaerts K, Gyselinck I, Cardinaels N, Gabrovska M, et al. Treatment failure and hospital readmissions in severe COPD exacerbations treated with azithromycin versus placebo–a post-hoc analysis of the BACE randomized controlled trial. Respir Res. 2019;20(1):1–12.

    Article  CAS  Google Scholar 

  47. Murdoch JMC, Leckie WJH, Downie J, Swain RHA. An evaluation of continuous antibiotic therapy in chronic bronchitis. Br Med J. 1959;2(5162):1277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suzuki T, Yanai M, Yamaya M, Satoh-Nakagawa T, Sekizawa K, Ishida S, et al. Erythromycin and common cold in COPD. Chest. 2001;120(3):730–3.

    Article  CAS  PubMed  Google Scholar 

  49. Banerjee D, Khair OA, Honeybourne D. The effect of oral clarithromycin on health status and sputum bacteriology in stable COPD. Respir Med. 2005;99(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  50. Seemungal TAR, Wilkinson TMA, Hurst JR, Perera WR, Sapsford RJ, Wedzicha JA. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med [Internet]. 2008 Dec 20 [cited 2022 Aug 25];178(11):1139–47. Available from: www.clinicaltrials.gov

  51. Blasi F, Bonardi D, Aliberti S, Tarsia P, Confalonieri M, Amir O, et al. Long-term azithromycin use in patients with chronic obstructive pulmonary disease and tracheostomy. Pulm Pharmacol Ther. 2010;23(3):200–7.

    Article  CAS  PubMed  Google Scholar 

  52. He ZY, Ou LM, Zhang JQ, Bai J, Liu GN, Li MH, et al. Effect of 6 months of erythromycin treatment on inflammatory cells in induced sputum and exacerbations in chronic obstructive pulmonary disease. Theatr Res Int 2010 Nov [cited 2022 Aug 25];80(6):445–452. Available from: https://www.karger.com/Article/FullText/321374

  53. Albert RK, Connett J, Bailey WC, Casaburi R, Cooper AD, Criner GJ, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365(8):689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berkhof FF, Hertog NED, Uil SM, Kerstjens HAM, van den Berg JWK. Azithromycin and cough-specific health status in patients with chronic obstructive pulmonary disease and chronic cough: a randomised controlled trial. Respir Res [Internet]. 2013 Nov 14 [cited 2022 Aug 22];14(1):125. Available from: /pmc/articles/PMC3835397/.

    Google Scholar 

  55. Simpson JL, Powell H, Baines KJ, Milne D, Coxson HO, Hansbro PM, et al. The effect of azithromycin in adults with stable neutrophilic COPD: a double blind randomised, placebo controlled trial. PLoS One [Internet] 2014 Aug 22 [cited 2022 Aug 23];9(8). Available from: /pmc/articles/PMC4141795/.

    Google Scholar 

  56. Uzun S, Djamin RS, Kluytmans JAJW, Mulder PGH, van’t Veer NE, Ermens AAM, et al. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med [Internet]. 2014;2(5):361–8. Available from:. https://doi.org/10.1016/S2213-2600(14)70019-0.

    Article  CAS  PubMed  Google Scholar 

  57. Brill SE, Law M, El-Emir E, Allinson JP, James P, Maddox V, et al. Effects of different antibiotic classes on airway bacteria in stable COPD using culture and molecular techniques: a randomised controlled trial. Thorax [Internet] 2015 Oct 1 [cited 2022 Aug 22];70(10):930–938. Available from: /pmc/articles/PMC4602260/.

    Google Scholar 

  58. Shafuddin E, Mills GD, Holmes MD, Poole PJ, Mullins PR, Black PN. A double-blind, randomised, placebo-controlled study of roxithromycin and doxycycline combination, roxithromycin alone, or matching placebo for 12 weeks in adults with frequent exacerbations of chronic obstructive pulmonary disease. J Negat Results Biomed [Internet]. 2015 Sep 7 [cited 2022 Aug 23];14(1). Available from: /pmc/articles/PMC4562194/.

    Google Scholar 

  59. Tan C, Huang H, Zhang J, He Z, Zhong X, Bai J. Effects of Low-Dose and Long-Term Treatment with Erythromycin on Interleukin-17 and Interleukin-23 in Peripheral Blood and Induced Sputum in Patients with Stable Chronic Obstructive Pulmonary Disease. Mediators Inflamm [Internet]. 2016 [cited 2022 Aug 23];2016. Available from: /pmc/articles/PMC4834156/.

    Google Scholar 

  60. Wang P, Yang J, Yang Y, Ding Z. Effect of azithromycin in combination with simvastatin in the treatment of chronic obstructive pulmonary disease complicated by pulmonary arterial hypertension. Pakistan J Med Sci. 2017;33(2):260–4.

    Google Scholar 

  61. Ni W, Shao X, Cai X, Wei C, Cui J, Wang R, et al. Prophylactic use of macrolide antibiotics for the prevention of chronic obstructive pulmonary disease exacerbation: A meta-analysis. PLoS One [Internet]. 2015 Mar 26 [cited 2022 Aug 24];10(3). Available from: https://pubmed.ncbi.nlm.nih.gov/25812085/

  62. Wedzicha JA, Calverley PMA, Albert RK, Anzueto A, Criner GJ, Hurst JR, et al. Prevention of COPD exacerbations: a European Respiratory Society/ American Thoracic Society guideline [internet]. Vol. 50, European Respiratory Journal European Respiratory Society; 2017 [cited 2022 Aug 30]. p. 1602265. Available from: https://erj.ersjournals.com/content/50/3/1602265.

  63. Cui Y, Luo L, Li C, Chen P, Chen Y. Long-term macrolide treatment for the prevention of acute exacerbations in COPD: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis [Internet]. 2018 Nov 22 [cited 2022 Sep 12];13:3813–29. Available from: https://www.dovepress.com/long-term-macrolide-treatment-for-the-prevention-of-acute-exacerbation-peer-reviewed-fulltext-article-COPD

  64. Janjua S, Ag M, Fortescue R, Rae W, Sharif S, Cjd T, et al. Prophylactic antibiotics for adults with chronic obstructive pulmonary disease: a network meta-analysis (review). Cochrane Database Syst Rev. 2021;1

    Google Scholar 

  65. Han MK, Tayob N, Murray S, Dransfield MT, Washko G, Scanlon PD, et al. Predictors of chronic obstructive pulmonary disease exacerbation reduction in response to daily azithromycin therapy. Am J Respir Crit Care Med. 2014;189(12):1503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Seemungal TAR, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med [Internet]. 1998 [cited 2022 Sep 1];157(5 Pt 1):1418–22. Available from: https://pubmed.ncbi.nlm.nih.gov/9603117/

  67. O’Reilly PJ, Jackson PL, Wells JM, Dransfield MT, Scanlon PD, Blalock JE. Sputum PGP is reduced by azithromycin treatment in patients with COPD and correlates with exacerbations. BMJ Open [Internet] 2013 Dec 1 [cited 2022 Aug 25];3(12):e004140. Available from: https://bmjopen.bmj.com/content/3/12/e004140

  68. Naderi N, Assayag D, Mostafavi-Pour-Manshadi SMY, Kaddaha Z, Joubert A, Ouellet I, et al. Long-term azithromycin therapy to reduce acute exacerbations in patients with severe chronic obstructive pulmonary disease. Respir Med [Internet]. 2018 May 1 [cited 2022 Sep 14];138:129–36. Available from: https://pubmed.ncbi.nlm.nih.gov/29724384/

  69. Jain R, Danziger L. The macrolide antibiotics: a pharmacokinetic and Pharmacodynamic overview. Curr Pharm Des. 2005;10(25):3045–53.

    Article  Google Scholar 

  70. Rubinstein E. Comparative safety of the different macrolides. Int J Antimicrob Agents. 2001;18(18):71–6.

    Article  Google Scholar 

  71. Hansen MP, Scott AM, Mccullough A, Thorning S, Aronson JK, Beller EM, et al. Adverse events in people taking macrolide antibiotics versus placebo for any indication. Cochrane Database Syst Rev [Internet] 2019 Jan 18 [cited 2022 Sep 3];1(1). Available from: https://pubmed.ncbi.nlm.nih.gov/30656650/

  72. Gorelik E, Masarwa R, Perlman A, Rotshild V, Muszkat M, Matok I. Systematic review, meta-analysis, and network meta-analysis of the cardiovascular safety of macrolides. Antimicrob Agents Chemother [Internet]. 2018 Jun 1 [cited 2022 Sep 3];62(6). Available from:/pmc/articles/PMC5971614/.

    Google Scholar 

  73. Brusselle GG, VanderStichele C, Jordens P, Deman R, Slabbynck H, Ringoet V, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68(4):322–9.

    Article  PubMed  Google Scholar 

  74. Smith D, Du Rand I, Addy CL, Collyns T, Hart SP, Mitchelmore PJ, et al. British Thoracic Society guideline for the use of long-term macrolides in adults with respiratory disease. Thorax. 2020;75(5):370–404.

    Article  PubMed  Google Scholar 

  75. Yamaya M, Azuma A, Takizawa H, Kadota JI, Tamaoki J, Kudohe S. Macrolide effects on the prevention of COPD exacerbations. Eur Respir J [Internet]. 2012 Aug 1 [cited 2022 Nov 7];40(2):485–494. Available from: https://erj.ersjournals.com/content/40/2/485.

  76. Kim V, Criner GJ. Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(3):228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Castaldi PJ, Boueiz A, Yun J, Estepar RSJ, Ross JC, Washko G, et al. Machine learning characterization of COPD subtypes. Chest. 2019;(February):1–11.

    Google Scholar 

  78. Gonem S, Janssens W, Das N, Topalovic M. Applications of artificial intelligence and machine learning in respiratory medicine, vol. 75. Thorax. BMJ Publishing Group; 2020. p. 695–701.

    Google Scholar 

  79. Mathioudakis AG, Janssens W, Sivapalan P, Singanayagam A, Dransfield MT, Jensen JUS, et al. Acute exacerbations of chronic obstructive pulmonary disease: in search of diagnostic biomarkers and treatable traits. Thorax. 2020;75(6):520–7.

    Article  PubMed  Google Scholar 

  80. Kalonji NL, Nomura K, Kawase T, Ota C, Kubo H, Sato T, et al. The non-antibiotic macrolide EM900 inhibits rhinovirus infection and cytokine production in human airway epithelial cells. Physiol Rep [Internet]. 2015 Oct 1 [cited 2022 Sep 12];3(10):e12557. Available from: https://onlinelibrary.wiley.com/doi/full/10.14814/phy2.12557

  81. Sugawara A, Sueki A, Hirose T, Nagai K, Gouda H, Hirono S, et al. Novel 12-membered non-antibiotic macrolides from erythromycin A; EM900 series as novel leads for anti-inflammatory and/or immunomodulatory agents. Bioorg Med Chem Lett [Internet]. 2011 Apr 7 [cited 2022 Sep 12];21(11):3373–6. Available from: https://europepmc.org/article/med/21524580

  82. Kasetty G, Bhongir RKV, Papareddy P, Herwald H, Egesten A. The nonantibiotic macrolide em703 improves survival in a model of quinolone-treated pseudomonas aeruginosa airway infection. Antimicrob Agents Chemother [Internet]. 2017 Sep 1 [cited 2022 Sep 12];61(9). Available from: https://journals.asm.org/doi/10.1128/AAC.02761-16

  83. Gouda H, Sunazuka T, Yoshida K, Sugawara A, Sakoh Y, Omura S, et al. Three-dimensional solution structure of EM703 with potent promoting activity of monocyte-to-macrophage differentiation. Bioorg Med Chem Lett [Internet]. 2006 May 1 [cited 2022 Sep 12];16(9):2496–9. Available from: https://pubmed.ncbi.nlm.nih.gov/16480872/

  84. Arauzo B, Lopez-Mendez TB, Lobera MP, Calzada-Funes J, Pedraz JL, Santamaria J. Excipient-free inhalable microparticles of azithromycin produced by electrospray: a novel approach to direct pulmonary delivery of antibiotics. Pharmaceutics [Internet] 2021 Dec 1 [cited 2022 Sep 9];13(12). Available from: https://pubmed.ncbi.nlm.nih.gov/34959270/

  85. Manniello MD, Del Gaudio P, Aquino RP, Russo P. Clarithromycin and N-acetylcysteine co-spray-dried powders for pulmonary drug delivery: a focus on drug solubility. Int J Pharm. 2017;533(2):463–9.

    Article  CAS  PubMed  Google Scholar 

  86. Siekmeier R, Hofmann T, Scheuch G. Inhalation of Macrolides: A Novel Approach to Treatment of Pulmonary Infections. Adv Exp Med Biol [Internet]. 2015;839:13–24. Available from: https://link.springer.com/chapter/10.1007/5584_2014_50

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwein Gyselinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gyselinck, I., Janssens, W. (2024). Macrolide Use in Chronic Obstructive Pulmonary Disease. In: Rubin, B.K., Shinkai, M. (eds) Macrolides as Immunomodulatory Agents. Progress in Inflammation Research, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-031-42859-3_6

Download citation

Publish with us

Policies and ethics