Skip to main content

Macrolides for Cancer

  • Chapter
  • First Online:
Macrolides as Immunomodulatory Agents

Part of the book series: Progress in Inflammation Research ((PIR,volume 92))

  • 126 Accesses

Abstract

Macrolides exert their antitumor effects through various mechanisms. Clarithromycin markedly reduced the incidence of mucosa-associated lymphoid tissue (MALT) lymphoma with Helicobacter pylori eradication. For cancer growth signals, clarithromycin and roxithromycin exhibit their antitumor effects by inhibiting the Raf to mitogen-activated protein-kinase pathway by acting on extracellular signal-regulated kinase and exhibit antitumor effects. Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, is effective against cancer by inhibiting the phosphatidylinositol-3 kinase/Akt/mTOR signaling pathway. Ivermectin has been shown to inhibit the Wnt/β-catenin signaling pathway and the Hippo signaling pathway. Regarding growth suppressor evasion, clarithromycin can have an antitumor effect by suppressing TGF-β in combination with other drugs. Regarding resisting cell death, clarithromycin, azithromycin, and ivermectin can induce apoptosis. Clarithromycin and azithromycin can have antitumor effects by acting on autophagy in combination with anticancer drugs. Ivermectin has been reported to induce pyroptosis. Clarithromycin, azithromycin, and ivermectin can have antiangiogenic effects. Ivermectin is expected to inhibit epithelial–mesenchymal transition. Ivermectin and clarithromycin have been reported effective in their action on reactive oxygen species. Erythromycin is effective in overcoming resistance to anticancer drugs and has synergistic effects with other drugs. In clinical trials, the efficacy of clarithromycin has been established as an eradication therapy for MALT lymphoma. Also, clarithromycin, in combination with lenalidomide and dexamethasone, is effective in multiple myeloma. Rapamycin is effective in renal cell carcinoma, neuroendocrine tumors, breast cancer, etc., and has been approved by the FDA. Macrolides, which have various antitumor effects, will be the subject of future research, especially in combination with other drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CI:

confidence interval

CR:

complete response (remission)

HR:

hazard ratio

ORR:

objective response rate

OS:

overall survival;

PD:

progressive disease

PFS:

progression-free survival

PR:

partial response

SD:

stable disease

References

  1. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 9 Jan 2023.

  2. National Cancer Institute. https://www.cancer.gov/about-cancer/causes-prevention/genetics. Accessed 9 Jan 2023.

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  4. Kim SS, Ruiz VE, Carroll JD, Moss SF. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett. 2011;305(2):228–38.

    Article  CAS  PubMed  Google Scholar 

  5. Isaacson PG, Chott A, Nakamura S, Müller-Hermelink HK, Harris NL, Swerdlow SH. Extranodal marginal zone lymphoma of mucosa associated lymphoid tissue (MALT lymphoma). WHO classification of Tumours of Haematopoietic and lymphoid tissues. In: Swerdlow SH, Campo E, Harris NL, et al., editors. IARC press. 4th ed. Lyon; 2008. p. 214–7.

    Google Scholar 

  6. Ruskoné-Fourmestraux A, Fischbach W, Aleman BM, Boot H, Du MQ, Megraud F, et al. EGILS consensus report. Gastric extranodal marginal zone B-cell lymphoma of MALT. Gut. 2011;60(6):747–58.

    Article  PubMed  Google Scholar 

  7. Arima N, Tsudo M. Extragastric mucosa-associated lymphoid tissue lymphoma showing the regression by helicobacter pylori eradication therapy. Brit J Haematol. 2003;120(5):790–2.

    Article  Google Scholar 

  8. Ochi M, Tominaga K, Okazaki H, Yamamori K, Wada T, Shiba M, et al. Regression of primary low-grade mucosa-associated lymphoid tissue lymphoma of duodenum after long term treatment with clarithromycin. Scand J Gastroenterol. 2006;41(3):365–9.

    Article  CAS  PubMed  Google Scholar 

  9. Govi S, Dognini GP, Licata G, Crocchiolo R, Resti AG, Ponzoni M, et al. Six-month oral clarithromycin regimen is safe and active in extranodal marginal zone B-cell lymphomas:final results of a single-Centre phase II trial. Br J Haematol. 2010;150(2):226–9.

    Article  PubMed  Google Scholar 

  10. Ishimatsu Y, Mukae H, Matsumoto K, Harada T, Hara A, Hara S, et al. Two cases with pulmonary mucosa-associated lymphoid tissue lymphoma successfully treated with clarithromycin. Chest. 2010;138(3):730–3.

    Article  PubMed  Google Scholar 

  11. Fukase K, Kato M, Kikuchi S, Inoue K, Uemura N, Okamoto S, et al. Effect of eradication of helicobacter pylori on incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer: an open-label, randomised controlled trial. Lancet. 2008;372(9636):392–7.

    Article  PubMed  Google Scholar 

  12. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000;351(Pt 2):289–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):103–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. National Cancer Institute. https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2014/ras-proteins-created-equal. Accessed 9 Jan 2023.

  15. Morrison DK. MAP kinase pathways. Cold Spring Harb Perspect Biol. 2012;4(11):a011254.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frémin C, Meloche S. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol. 2010;3:8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Barbosa R, Acevedo LA, Marmorstein R. The MEK/ERK network as a therapeutic target in human cancer. Mol Cancer Res. 2021;19(3):361–74.

    Article  CAS  PubMed  Google Scholar 

  19. Shinkai M, Tamaoki J, Kobayashi H, Kanoh S, Motoyoshi K, Kute T, et al. Clarithromycin delays progression of bronchial epithelial cells from G1 phase to S phase and delays cell growth via extracellular signal-regulated protein kinase suppression. Antimicrob Agents Chemother. 2006;50(5):1738–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vicent S, Lopez-Picazo JM, Toledo G, Lozano MD, Torre W, Garcia-Corchon C, et al. ERK1/2 is activated in non-small-cell lung cancer and associated with advanced tumours. Br J Cancer. 2004;90(5):1047–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morimura S, Sugaya M, Kai H, Miyagaki T, Asano Y, Tada Y, et al. Depsipeptide and roxithromycin induce apoptosis of lymphoma cells by blocking extracellular signal-regulated kinase activation. J Dermatol. 2014;41(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  22. Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75.

    Article  CAS  PubMed  Google Scholar 

  23. Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 13(3):195–203.

    Google Scholar 

  24. Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283–96.

    Article  CAS  PubMed  Google Scholar 

  25. Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochim Biophys Acta. 2013;1834(7):1302–21.

    Article  CAS  PubMed  Google Scholar 

  26. Davies MA. Regulation, role, and targeting of Akt in cancer. J Clin Oncol. 2011;29(35):4715–7.

    Article  CAS  PubMed  Google Scholar 

  27. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 2005;9(1):59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Riaz A, Zeller KS, Johansson S. Receptor-specific mechanisms regulate phosphorylation of AKT at Ser473: role of RICTOR in 1 integrin-mediated cell survival. PLoS One. 2012;7(2):e32081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu M, Wang J, Ives HE, Pearce D. mSIN1 protein mediates SGK1 protein interaction with mTORC2 protein complex and is required for selective activation of the epithelial sodium channel. J Biol Chem. 2011;286(35):30647–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol. 2008;1(1–4):27–36.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28:721–6.

    Article  CAS  PubMed  Google Scholar 

  32. Dowling RJO, Pollak M, Sonenberg N. Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs. 2009;23(2):77–91.

    Article  CAS  PubMed  Google Scholar 

  33. Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–79.

    Article  CAS  PubMed  Google Scholar 

  34. Melotti A, Mas C, Kuciak M, Lorente-Trigos A, Borges I, Ari A. The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer. EMBO Mol Med. 2014;6(10):1263–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19(4):491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu J, Zhang K, Cheng L, Zhu H, Xu T. Progress in understanding the molecular mechanisms underlying the antitumour effects of Ivermectin. Drug Des Devel Ther. 2020;14:285–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nambara S, Masuda T, Nishio M, Kuramitsu S, Tobo T, Ogawa Y, et al. Antitumor effects of the antiparasitic agent ivermectin via inhibition of yes-associated protein 1 expression in gastric cancer. Oncotarget. 2017;8(64):107666–77.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6(7):506–20.

    Article  CAS  PubMed  Google Scholar 

  39. Sassa K, Mizushima Y, Fujishita T, Oosaki R, Kobayashi M. Therapeutic effect of clarithromycin on a transplanted tumor in rats. Antimicrobial Agents Chemother. 1999;43(1):67–72.

    Article  CAS  Google Scholar 

  40. Bai L, Wang S. Targeting apoptosis pathways for new cancer therapeutics. Annu Rev Med. 2014;65:139–55.

    Article  CAS  PubMed  Google Scholar 

  41. Cheng Q, Chen J. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle. 2010;9(3):472–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lahav G. Oscillations by the p53-Mdm2 feedback loop. Adv Exp Med Biol. 2008;641:28–38.

    Article  CAS  PubMed  Google Scholar 

  43. Muntané J. Harnessing tumor necrosis factor receptors to enhance antitumor activities of drugs. Chem Res Toxicol. 2011;24(10):1610–6.

    Article  PubMed  Google Scholar 

  44. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5(4):a008656.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ohara T, Morishita T, Suzuki H, Masaoka T, Ishii H, Hibi T. Antibiotics directly induce apoptosis in B cell lymphoma cells derived from BALB/c mice. Anticancer Res. 2004;24(6):3723–30.

    CAS  PubMed  Google Scholar 

  46. Chen Y, Han T, Iqbal J, Irons R, Chan WC, Zhu X, et al. Diffuse large B-cell lymphoma in Chinese patients: immunophenotypic and cytogenetic analyses of 124 cases. Am J Clin Pathol. 2010;133(2):305–13.

    Article  PubMed  Google Scholar 

  47. Ohashi S, Segawa K, Okamura S, Urano H, Kanamori S, Ishikawa H, et al. A clinicopathologic study of gastric mucosa-associated lymphoid tissue lymphoma. Cancer. 2000;88(10):2210–9.

    Article  CAS  PubMed  Google Scholar 

  48. Fukui T, Okazaki K, Tamaki H, Kawasaki K, Matsuura M, Asada M, et al. Immunogenetic analysis of gastric MALT lymphoma-like lesions induced by helicobacter pylori infection in neonatally thymectomized mice. Lab Investig. 2004;84(4):485–92.

    Article  CAS  PubMed  Google Scholar 

  49. Morgner A, Sutton P, O'Rourke JL, Enno A, Dixon MF, Lee A. Helicobacter-induced expression of Bcl-X(L) in B lymphocytes in the mouse model: a possible step in the development of gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Int J Cancer. 2001;92(5):634–40.

    Article  CAS  PubMed  Google Scholar 

  50. Mizunoe S, Kadota J, Tokimatsu I, Kishi K, Nagai H, Nasu M. Clarithromycin and azithromycin induce apoptosis of activated lymphocytes via down-regulation of Bcl-xL. Int Immunopharmacol. 2004;4(9):1201–7.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou X, Zhang Y, Li Y, Hao X, Liu X, Wang Y. Azithromycin synergistically enhances anti-proliferative activity of vincristine in cervical and gastric cancer cells. Cancers (Basel). 2012;4(4):1318–32.

    Article  CAS  PubMed  Google Scholar 

  52. Qiao X, Wang X, Shang Y, Li Y, Chen SZ. Azithromycin enhances anticancer activity of TRAIL by inhibiting autophagy and up-regulating the protein levels of DR4/5 in colon cancer cells in vitro and in vivo. Cancer Commun (Lond). 2018;38(1):43.

    PubMed  Google Scholar 

  53. Ozkan T, Hekmatshoar Y, Karabay AZ, Koc A, Gunes BA, Gurel AK, et al. Assessment of azithromycin as an anticancer agent for treatment of imatinib sensitive and resistant CML cells. Leuk Res. 2021;102:106523.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang P, Zhang Y, Liu K, Liu B, Xu W, Gao J, et al. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell Prolif. 2019;52(2):e12543.

    Article  PubMed  Google Scholar 

  55. Draganov D, Gopalakrishna-Pillai S, Chen YR, Zuckerman N, Moeller S, Wang C, et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu Y, Fang S, Sun Q, Liu B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun. 2016;480(3):415–21.

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Xu Y, Wan H, Hu J. Antibiotic ivermectin selectively induces apoptosis in chronic myeloid leukemia through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun. 2018;497(1):241–7.

    Article  CAS  PubMed  Google Scholar 

  58. Sharmeen S, Skrtic M, Sukhai MA, Hurren R, Gronda M, Wang X, et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood. 2010;116(18):3593–603.

    Article  CAS  PubMed  Google Scholar 

  59. Kodama M, Kodama T, Newberg JY, Katayama H, Kobayashi M, Hanash SM, et al. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci U S A. 2017;114(35):E7301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 2009;15(17):5308–16.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nakamura M, Kikukawa Y, Takeya M, Mitsuya H, Hata H. Clarithromycin attenuates autophagy in myeloma cells. Int J Oncol. 2010;37(4):815–20.

    CAS  PubMed  Google Scholar 

  62. Schafranek L, Leclercq TM, White DL, Hughes TP. Clarithromycin enhances dasatinib-induced cell death in chronic myeloid leukemia cells, by inhibition of late stage autophagy. Leuk Lymphoma. 2013;54(1):198–201.

    Article  CAS  PubMed  Google Scholar 

  63. Toriyama K, Takano N, Kokuba H, Kazama H, Moriya S, Hiramoto M, et al. Azithromycin enhances the cytotoxicity of DNA-damaging drugs via lysosomal membrane permeabilization in lung cancer cells. Cancer Sci. 2021;112(8):3324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moriya S, Che XF, Komatsu S, Abe A, Kawaguchi T, Gotoh A, et al. Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells. Int J Oncol. 2013;42(5):1541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Komatsu S, Miyazawa K, Moriya S, Takase A, Naito M, Inazu M, et al. Clarithromycin enhances bortezomib-induced cytotoxicity via endoplasmic reticulum stress-mediated CHOP (GADD153) induction and autophagy in breast cancer cells. Int J Oncol. 2012;40(4):1029–39.

    Article  CAS  PubMed  Google Scholar 

  66. Hirasawa K, Moriya S, Miyahara K, Kazama H, Hirota A, Takemura J, et al. Macrolide antibiotics exhibit cytotoxic effect under amino acid-depleted culture condition by blocking autophagy flux in head and neck squamous cell carcinoma cell lines. PLoS One. 2016;11(12):e0164529.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Crump A. Ivermectin: enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations. J Antibiot (Tokyo). 2017;70(5):495–505.

    Article  CAS  PubMed  Google Scholar 

  68. Hashimoto H, Sudo T, Maruta H, Nishimura R. The direct PAK1 inhibitor, TAT-PAK18, blocks preferentially the growth of human ovarian cancer cell lines in which PAK1 is abnormally activated by autophosphorylation at Thr 423. Drug Discov Ther. 2010;4(1):1–4.

    CAS  PubMed  Google Scholar 

  69. Shinojima N, Yokoyama T, Kondo Y, Kondo S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy. 2014;3(6):635–7.

    Article  Google Scholar 

  70. Dou Q, Chen HN, Wang K, et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res. 2016;76(15):4457–69.

    Article  CAS  PubMed  Google Scholar 

  71. Hashimoto HMS, Sudo T, Maruta H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov Ther. 2009;3(6):3.

    Google Scholar 

  72. Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang Y, et al. Pyroptosis: a new frontier in cancer. Biomed Pharmacother. 2020;121:109595.

    Article  CAS  PubMed  Google Scholar 

  73. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353–64.

    Article  CAS  PubMed  Google Scholar 

  74. Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol. 2009;21(2):154–65.

    Article  CAS  PubMed  Google Scholar 

  75. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005;23(5):1011–27.

    Article  CAS  PubMed  Google Scholar 

  76. Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65(3):550–63.

    Article  CAS  PubMed  Google Scholar 

  77. Grothey A, Galanis E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol. 2009;6(9):507–18.

    Article  CAS  PubMed  Google Scholar 

  78. Yatsunami J, Turuta N, Wakamatsu K, Hara N, Hayashi S. Clarithromycin is a potent inhibitor of tumor-induced angiogenesis. Res Exp Med (Berl). 1997;197(4):189–97.

    Article  CAS  PubMed  Google Scholar 

  79. Yatsunami J, Fukuno Y, Nagata M, Tsuruta N, Aoki S, Tominaga M, et al. Roxithromycin and clarithromycin, 14-membered ring macrolides, potentiate the antitumor activity of cytotoxic agents against mouse B16 melanoma cells. Cancer Lett. 1999;147(1–2):17–24.

    Article  CAS  PubMed  Google Scholar 

  80. Li F, Huang J, Ji D, Meng Q, Wang C, Chen S, et al. Azithromycin effectively inhibits tumor angiogenesis by suppressing vascular endothelial growth factor receptor 2-mediated signaling pathways in lung cancer. Oncol Lett. 2017;14(1):89–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aoki D, Ueno S, Kubo F, Oyama T, Sakuta T, Matsushita K, et al. Roxithromycin inhibits angiogenesis of human hepatoma cells in vivo by suppressing VEGF production. Anticancer Res. 2005;25(1A):133–8.

    CAS  PubMed  Google Scholar 

  82. Lee JY, Kong G. Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression. Cell Mol Life Sci. 2016;73(24):4643–60.

    Article  CAS  PubMed  Google Scholar 

  83. Tam WL, Weinberg RA. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med. 2013;19(11):1438–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Silverstein RA, Ekwall K. Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet. 2005;47(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  85. Farias EF, Petrie K, Leibovitch B, Murtagh J, Chornet MB, Schenk T, et al. Interference with Sin3 function induces epigenetic reprogramming and differentiation in breast cancer cells. Proc Natl Acad Sci U S A. 2010;107(26):11811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kwon YJ, Petrie K, Leibovitch BA, Zeng L, Mezei M, Howell L, et al. Selective inhibition of SIN3 corepressor with avermectins as a novel therapeutic strategy in triple-negative breast cancer. Mol Cancer Ther. 2015;14(8):1824–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, et al. The double-edged roles of ROS in cancer prevention and therapy. Theranostics. 2021;11(10):4839–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou B, Xia M, Wang B, Thapa N, Gan L, Sun C, et al. Clarithromycin synergizes with cisplatin to inhibit ovarian cancer growth in vitro and in vivo. J Ovarian Res. 2019;12(1):107.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Huang Z, Wu T, Liu AY, Ouyang G. Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget. 2015;6(37):39550–63.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234(6):8381–95.

    Article  CAS  PubMed  Google Scholar 

  91. Dominguez-Gomez G, Chavez-Blanco A, Medina-Franco JL, Saldivar-Gonzalez F, Flores-Torrontegui Y, Juarez M, Diaz-Chavez J, Gonzalez-Fierro A, Duenas-Gonzalez A. Ivermectin as an inhibitor of cancer stemlike cells. Mol Med Rep. 2018;17(2):3397–403.

    CAS  PubMed  Google Scholar 

  92. Wang L, Kitaichi K, Hui CS, Takagi K, Takagi K, Sakai M, et al. Reversal of anticancer drug resistance by macrolide antibiotics in vitro and in vivo. Clin Exp Pharmacol Physiol. 2000;27(8):587–93.

    Article  CAS  PubMed  Google Scholar 

  93. Lespine A, Dupuy J, Orlowski S, Nagy T, Glavinas H, Krajcsi P, et al. Interaction of ivermectin with multidrug resistance proteins (MRP1, 2 and 3). Chem Biol Interact. 2006;159(3):169–79.

    Article  CAS  PubMed  Google Scholar 

  94. Pouliot JF, L’Heureux F, Liu Z, Prichard RK, Georges E. Reversal of Pglycoprotein-associated multidrug resistance by ivermectin. Biochem Pharmacol. 1997;53(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  95. Lespine A, Martin S, Dupuy J, Roulet A, Pineau T, Orlowski S, et al. Interaction of macrocyclic lactones with P-glycoprotein: structure-affinity relationship. Eur J Pharm Sci. 2007;30(1):84–94.

    Article  CAS  PubMed  Google Scholar 

  96. Routledge PA. The plasma protein binding of basic drugs. Br J Clin Pharmacol. 1986;22(5):499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Piver MS, Moyer M, Diakun K, Lele SB, Chu TM. Serum alpha1-acid glycoprotein in epithelial ovarian cancer. Gynecol Oncol. 1988;29(3):305–8.

    Article  CAS  PubMed  Google Scholar 

  98. Elg SA, Mayer AR, Carson LF, Twiggs LB, Hill RB, Ramakrishnan S. Alpha-1 acid glycoprotein is an immunosuppressive factor found in ascites from ovaria carcinoma. Cancer. 1997;80(8):1448–56.

    Article  CAS  PubMed  Google Scholar 

  99. Ohbatake Y, Fushida S, Tsukada T, Kinoshita J, Oyama K, Hayashi H, et al. Elevated alpha1-acid glycoprotein in gastric cancer patients inhibits the anticancer effects of paclitaxel, effects restored by co-administration of erythromycin. Clin Exp Med. 2016;16(4):585–92.

    Article  CAS  PubMed  Google Scholar 

  100. Jiang M, Dun W, Tseng GN. Mechanism for the effects of extracellular acidification on HERG-channel function. Am J Phys. 1999;277(4):H1283–92.

    CAS  Google Scholar 

  101. Cherubini A, Taddei GL, Crociani O, Paglierani M, Buccoliero AM, Fontana L, et al. HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer. 2000;83(12):1722–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bianchi L, Wible B, Arcangeli A, Taglialatela M, Morra F, Castaldo P, et al. Herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res. 1998;58(4):815–22.

    CAS  PubMed  Google Scholar 

  103. Pillozzi S, Brizzi MF, Balzi M, Crociani O, Cherubini A, Guasti L, et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia. 2002;16(9):1791–8.

    Article  CAS  PubMed  Google Scholar 

  104. Chen SZ, Jiang M, Zhen YS. HERG K+ channel expression-related chemosensitivity in cancer cells and its modulation by erythromycin. Cancer Chemother Pharmacol. 2005;56(2):212–20.

    Article  CAS  PubMed  Google Scholar 

  105. Coleman M, Leonard J, Lyons L, Pekle K, Nahum K, Pearse R, et al. BLT-D (clarithromycin [Biaxin], low-dose thalidomide, and dexamethasone) for the treatment of myeloma and Waldenström's macroglobulinemia. Leuk Lymphoma. 2002;43(9):1777–82.

    Article  CAS  PubMed  Google Scholar 

  106. Niesvizky R, Jayabalan DS, Christos PJ, Furst JR, Naib T, Ely S, et al. BiRD (Biaxin [clarithromycin]/Revlimid [lenalidomide]/dexamethasone) combination therapy results in high complete- and overall-response rates in treatment-naive symptomatic multiple myeloma. Blood. 2008;111(3):1101–9.

    Article  CAS  PubMed  Google Scholar 

  107. Rossi A, Mark T, Jayabalan D, Christos P, Zafar F, Pekle K, et al. BiRd (clarithromycin, lenalidomide, dexamethasone): an update on long-term lenalidomide therapy in previously untreated patients with multiple myeloma. Blood. 2013;121(11):1982–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gay F, Rajkumar SV, Coleman M, Kumar S, Mark T, Dispenzieri A, et al. Clarithromycin (Biaxin)-lenalidomide-low-dose dexamethasone (BiRd) versus lenalidomide-low-dose dexamethasone (Rd) for newly diagnosed myeloma. Am J Hematol. 2010;85(9):664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Puig N, Hernandez MT, Rosinol L, Gonzalez E, Arriba F, Oriol A, et al. Lenalidomide and dexamethasone with or without clarithromycin in patients with multiple myeloma ineligible for autologous transplant: a randomized trial. Blood Cancer J. 2021;11(5):101.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Steinbach G, Ford R, Glober G, Sample D, Hagemeister FB, Lynch PM, et al. Antibiotic treatment of gastric lymphoma of mucosa-associated lymphoid tissue. An uncontrolled trial Ann Intern Med. 1999;131(2):88–95.

    Article  CAS  PubMed  Google Scholar 

  111. Thiede C, Wündisch T, Alpen B, Neubauer B, Morgner A, Schmitz M, et al. Long-term persistence of monoclonal B cells after cure of helicobacter pylori infection and complete histologic remission in gastric mucosa-associated lymphoid tissue B-cell lymphoma. J Clin Oncol. 2001;19(6):1600–9.

    Article  CAS  PubMed  Google Scholar 

  112. Ruskone-Fourmestraux A, Lavergne A, Aegerter PH, Megraud F, Palazzo L, Mascarel AD, et al. Predictive factors for regression of gastric MALT lymphoma after anti-helicobacter pylori treatment. Gut. 2001;48(3):297–303.

    Article  CAS  PubMed  Google Scholar 

  113. Fischbach W, Goebeler-Kolve ME, Dragosics B, Greiner A, Stolte M. Long term outcome of patients with gastric marginal zone B cell lymphoma of mucosa associated lymphoid tissue (MALT) following exclusive helicobacter pylori eradication therapy: experience from a large prospective series. Gut. 2004;53(1):34–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ferreri AJ, Govi S, Raderer M, Mulè A, Andriani A, Caracciolo D, et al. Helicobacter pylori eradication as exclusive treatment for limited-stage gastric diffuse large B-cell lymphoma: results of a multicenter phase 2 trial. Blood. 2012;120(18):3858–60.

    Article  CAS  PubMed  Google Scholar 

  115. Mikasa K, Sawaki M, Kita E, Hamada K, Teramoto S, Sakamoto M, et al. Significant survival benefit to patients with advanced non-small-cell lung cancer from treatment with clarithromycin. Chemotherapy. 1997;43(4):288–96.

    Article  CAS  PubMed  Google Scholar 

  116. Musto P, Falcone A, Sanpaolo G, Bodenizza C, Carotenuto M, Carella AM. Inefficacy of clarithromycin in advanced multiple myeloma: a definitive report. Haematologica. 2002;87(6):658–9.

    CAS  PubMed  Google Scholar 

  117. Stewart AK, Trudel S, Al-Berouti BM, Sutton DM, Meharchand J. Lack of response to short-term use of clarithromycin (BIAXIN) in multiple myeloma. Blood. 1999;93(12):4441.

    Article  CAS  PubMed  Google Scholar 

  118. Moreau P, Huynh A, Facon T, Bouilly I, Sotto JJ, Legros L, et al. Lack of efficacy of clarithromycin in advanced multiple myeloma. Intergroupe Français du Myélome(IFM). Leukemia. 1999;13(3):490–1.

    Article  CAS  PubMed  Google Scholar 

  119. Carella AM, Beltrami G, Pica G, Carella A, Catania G. Clarithromycin potentiates tyrosine kinase inhibitor treatment in patients with resistant chronic myeloid leukemia. Leuk Lymphoma. 2012;53(7):1409–11.

    Article  CAS  PubMed  Google Scholar 

  120. Sakamoto M, Mikasa K, Majima T, Hamada K, Konishi M, Maeda K, et al. Anti-cachectic effect of clarithromycin for patients with unresectable non-small cell lung cancer. Chemotherapy. 2001;47(6):444–51.

    Article  CAS  PubMed  Google Scholar 

  121. Lagler H, Kiesewetter B, Dolak W, Obermueller M, Simonitsch-Klupp I, Lukas J, et al. Treatment of mucosa associated lymphoid tissue lymphoma with a long-term once-weekly regimen of oral azithromycin: results from the phase II MALT-A trial. Hematol Oncol. 2019;37(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  122. Chu DJ, Yao DE, Zhuang YF, Hong Y, Zhu XC, Fang ZR, et al. Azithromycin enhances the favorable results of paclitaxel and cisplatin in patients with advanced non-small cell lung cancer. Genet Mol Res. 2014;13(2):2796–805.

    Article  CAS  PubMed  Google Scholar 

  123. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer. 2010;116(18):4256–65.

    Article  CAS  PubMed  Google Scholar 

  124. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.

    Article  CAS  PubMed  Google Scholar 

  125. André F, O'Regan R, Ozguroglu M, Toi M, Xu B, Jerusalem G, et al. Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol. 2014;15(6):580–91.

    Article  PubMed  Google Scholar 

  126. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet. 2016;387(10022):968–77.

    Article  CAS  PubMed  Google Scholar 

  127. Pavel ME, Hainsworth JD, Baudin E, Peeters M, Hörsch D, Winkler RE, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378(9808):2005–12.

    Article  CAS  PubMed  Google Scholar 

  128. Franz DN, Belousova E, Sparagana S, Bebin EB, Frost M, Kuperman R, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2013;381(9861):125–32.

    Article  CAS  PubMed  Google Scholar 

  129. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356(22):2271–81.

    Article  CAS  PubMed  Google Scholar 

  130. Sun Y, Rha S, Lee SH, Guo J, Ueda T, Qin S, et al. Phase II study of the safety and efficacy of temsirolimus in east Asian patients with advanced renal cell carcinoma. Jpn J Clin Oncol. 2012;42(9):836–44.

    Article  PubMed  Google Scholar 

  131. Grünwald V, Keilholz U, Boehm A, Guntinas-Lichius O, Hennemann B, Schmoll HJ, et al. TEMHEAD: a single-arm multicentre phase II study of temsirolimus in platin- and cetuximab refractory recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) of the German SCCHN group (AIO). Ann Oncol. 2015;26(3):561–7.

    Article  PubMed  Google Scholar 

  132. Dunn LA, Fury MG, Xiao H, Baxi SS, Sherman EJ, Korte S, et al. A phase II study of temsirolimus added to low-dose weekly carboplatin and paclitaxel for patients with recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC). Ann Oncol. 2017;28(10):2533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Slingluff CL Jr, Petroni GR, Molhoek KR, Brautigan DL, Chianese-Bullock KA, Shada AL, et al. Clinical activity and safety of combination therapy with temsirolimus and bevacizumab for advanced melanoma: a phase II trial (CTEP 7190/Mel47). Clin Cancer Res. 2013;19(13):3611–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schwartz GK, Tap WD, Qin LX, Livingston MB, Undevia SD, Chmielowski B, et al. Cixutumumab and temsirolimus for patients with bone and soft-tissue sarcoma: a multicentre, open-label, phase 2 trial. Lancet Oncol. 2013;14(4):371–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Eroglu Z, Tawbi HA, Hu J, Guan M, Frankel PH, Ruel NH, et al. A randomised phase II trial of selumetinib vs selumetinib plus temsirolimus for soft-tissue sarcomas. Br J Cancer. 2015;112(10):1644–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mascarenhas L, Chi YY, Hingorani P, Anderson JR, Lyden ER, Rodeberg DA, et al. Randomized phase II trial of bevacizumab or Temsirolimus in combination with chemotherapy for first relapse rhabdomyosarcoma: a report from the Children's oncology group. J Clin Oncol. 2019;37(31):2866–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ansell SM, Tang H, Kurtin PJ, Koenig PA, Inwards DJ, Shah K, et al. Temsirolimus and rituximab in patients with relapsed or refractory mantle cell lymphoma: a phase 2 study. Lancet Oncol. 2011;12(4):361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Colombo N, McMeekin DS, Schwartz PE, Sessa C, Gehrig PA, Holloway R, et al. Ridaforolimus as a single agent in advanced endometrial cancer: results of a single-arm, phase 2 trial. Br J Cancer. 2013;108(5):1021–6.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Seiler M, Ray-Coquard I, Melichar B, Yardley DA, Wang RX, Dodion PF, et al. Oral ridaforolimus plus trastuzumab for patients with HER2+ trastuzumab-refractory metastatic breast cancer. Clin Breast Cancer. 2015;15(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  140. Demetri GD, Chawla SP, Ray-Coquard I, Le Cesne A, Staddon AP, Milhem MM, et al. Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J Clin Oncol. 2013;31(19):2485–92.

    Article  CAS  PubMed  Google Scholar 

  141. Slomovitz BM, Filiaci VL, Walker JL, Taub MC, Finkelstein KA, Moroney JW, et al. A randomized phase II trial of everolimus and letrozole or hormonal therapy in women with advanced, persistent or recurrent endometrial carcinoma: a GOG foundation study. Gynecol Oncol. 2022;164(3):481–91.

    Article  CAS  PubMed  Google Scholar 

  142. Kim SJ, Shin DY, Kim JS, Yoon DH, Lee WS, Lee H, et al. A phase II study of everolimus (RAD001), an mTOR inhibitor plus CHOP for newly diagnosed peripheral T-cell lymphomas. Ann Oncol. 2016;27(4):712–8.

    Article  CAS  PubMed  Google Scholar 

  143. Janku F, Park H, Call SG, Madwani K, Oki Y, Subbiah V, et al. Safety and efficacy of Vorinostat plus Sirolimus or Everolimus in patients with relapsed refractory Hodgkin lymphoma. Clin Cancer Res. 2020;26(21):5579–87.

    Article  CAS  PubMed  Google Scholar 

  144. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C, et al. Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009;27(23):3822–9.

    Article  CAS  PubMed  Google Scholar 

  145. Oza AM, Pignata S, Poveda A, McCormack M, Clamp A, Schwartz B, et al. Randomized phase II trial of Ridaforolimus in advanced endometrial carcinoma. J Clin Oncol. 2015;33(31):3576–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shinoda, M. (2024). Macrolides for Cancer. In: Rubin, B.K., Shinkai, M. (eds) Macrolides as Immunomodulatory Agents. Progress in Inflammation Research, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-031-42859-3_12

Download citation

Publish with us

Policies and ethics