Skip to main content

Numerical Evaluation of the Properties of Highly Efficient Titanium Porous Materials

  • Conference paper
  • First Online:
Advanced Manufacturing Processes V (InterPartner 2023)

Abstract

An exciting combination of such properties as high strength, low density, corrosion resistance, and biocompatibility characterizes titanium. However, the widespread use of titanium at the industrial level has not yet been achieved due to its high extraction and production costs. Therefore, titanium is increasingly used in sectors with high demand, such as the aerospace industry or the production of biomedical devices, where the final high cost is not a major factor. It is believed that processing titanium and its alloys using powder metallurgy (PM) methods is a significant way to reduce the cost of manufacturing titanium products. It also provides the opportunity to develop new alloys that are difficult to obtain using traditional technologies. This work is devoted to processing titanium powder from biomedical production waste using various PM methods. It aims to research the processing of almost pure, chemically homogeneous, and fine-grained titanium-based components. In particular, the main properties that can be achieved (porosity, microstructure, and mechanical properties) and the creation of highly efficient porous materials by advanced methods of isostatic pressing are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jung, J.-H.: Study on surface shape control of pure Ti fabricated by electron beam melting using electrolytic polishing. Surf. Coat. Technol. 324, 106–110 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.061

    Article  Google Scholar 

  2. Sklabinskyi, V., Liaposhchenko, O., Pavlenko, I., Lytvynenko, O., Demianenko, M.: Modelling of liquid’s distribution and migration in the fibrous filter layer in the process of inertial-filtering separation. In: Ivanov V. et al. (eds) Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering, pp. 489–497. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_51

  3. Pavlenko, I., Liaposhchenko, A., Ochowiak, M., Demyanenko, M.: Solving the stationary hydroaeroelasticity problem for dynamic deflection elements of separation devices. Vibr. Phys. Syst. 29, 2018026 (2018)

    Google Scholar 

  4. Wang, J.: Energy absorption characteristics and preparation of porous titanium with high porosity. Mater. Today Commun. 34, 54–60 (2023). https://doi.org/10.1016/j.mtcomm.2022.105003

    Article  Google Scholar 

  5. Povstyanoi, O.Y., Sychuk, V.A., McMillan, A., et al.: Metallographic analysis and microstructural image processing of sandblasting nozzles produced by powder metallurgy methods. Powder Metall. Met. Ceram. 54, 234–240 (2015). https://doi.org/10.1007/s11106-015-9705-8

    Article  Google Scholar 

  6. Povstianoi, O.Y., Rud, V.D., Imbirovych, N.Y., et al.: Optimization of the properties of multilayer porous permeable materials. Mater. Sci. 56, 530–535 (2021). https://doi.org/10.1007/s11003-021-00460-2

    Article  Google Scholar 

  7. Zhang, E., Wang, X., Han, Y.: Research status of biomedical porous Ti and its alloy in China. Acta Metall Sin 53(12), 1555–1567 (2017). https://doi.org/10.11900/0412.1961.2017.00324

    Article  Google Scholar 

  8. Zabolotny, O.: Development of processes of pressing of powder materials. Sci. Notes 8, 135–141 (2001)

    Google Scholar 

  9. Bolzoni, L., Ruiz-Navas, E.M., Gordo, E.: Processing of elemental titanium by powder metallurgy techniques. Mater. Sci. Forum 765, 383–387 (2013). https://doi.org/10.4028/www.scientific.net/msf.765.383

    Article  Google Scholar 

  10. Yamanoglu, R., Bahador, A., Kondoh, K.: Fabrication methods of porous titanium implants by powder metallurgy. Trans. Indian Inst. Met. 74, 2555–2567 (2021). https://doi.org/10.1007/s12666-021-02332-4

    Article  Google Scholar 

  11. Liu, Z., Ji, F., Wang, M., Zhu, T.: One-dimensional constitutive model for porous titanium alloy at various strain rates and temperatures. Metals 7(1), 24–30 (2017). https://doi.org/10.3390/met7010024

    Article  Google Scholar 

  12. Shbeh, M.M., Goodall, R.: Open pore titanium foams via metal injection molding of metal powder with a space holder. Met. Powder Rep. 71(6), 450–455 (2016). https://doi.org/10.1016/j.mprp.2016.06.003

    Article  Google Scholar 

  13. Ataee, A., Li, Y., Fraser, D., Song, G., Wen, C.: Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater. Des. 137, 345–354 (2018). https://doi.org/10.1016/j.matdes.2017.10.040

    Article  Google Scholar 

  14. Stanev, L., Kolev, M., Drenchev, B., Drenchev, L.: Open-cell metallic porous materials obtained through space holders Part II: Structure and properties. A review. J. Manuf. Sci. Eng. 139(5), 050802 (2017). https://doi.org/10.1115/1.4034440

    Article  Google Scholar 

  15. Onishi, T., Azuma, K., Ogasawara, T.: Production of titanium porous material “tiporous” and its evaluation. Mater. Sci. Forum 534–536(2), 993–996 (2007). https://doi.org/10.4028/0-87849-419-7.993

    Article  Google Scholar 

  16. McMillan, A.J., Archer, E., McIlhagger, A., Lelong, G.: Strength knockdown assessment of porosity in composites: modelling, characterising and specimen manufacture. J. Phys. Conf. Ser. 382, 012027 (2012). https://doi.org/10.1088/1742-6596/382/1/012027

    Article  Google Scholar 

  17. Lebedev, V.V., Miroshnichenko, D.V., Nyakuma, B.B., Moiseev, V.F., Shestopalov, O.V., Vyrovets, S.V.: Design of inorganic polymer composites for electromagnetic radiation absorption using potassium titanates. J. Eng. Sci. (Ukraine) 10(1), C1–C8 (2023). https://doi.org/10.21272/jes.2023.10(1).c1

    Article  Google Scholar 

  18. Dzhemelinskyi, V., Lesyk, D., Goncharuk, O., Danyleika, O.: Surface hardening and finishing of metallic products by hybrid laser-ultrasonic treatment. Eastern-Eur. J. Enterp. Technol. 1(12–91), 35–42 (2018). https://doi.org/10.15587/1729-4061.2018.124031

    Article  Google Scholar 

  19. Wang, X.S., Lu, Z.L., Jia, L., Chen, J.X.: Preparation of porous titanium materials by powder sintering process and use of space holder technique. J. Iron. Steel Res. Int. 24(1), 97–102 (2017). https://doi.org/10.1016/S1006-706X(17)30014-6

    Article  Google Scholar 

  20. Reig, L., Amigó, V., Busquets, D., Salvador, M.D., Calero, J.A.: Analysis of sintering of titanium porous material processed by the space holder method. Ceram. Trans. 209, 273–282 (2010)

    Google Scholar 

  21. Rud’, V.D., Gal’chuk, T.N., Povstyanoi, A.Y.: Powder metallurgy use of waste from bearing production. Powder Metall. Met. Ceram. 44, 88–92 (2005). https://doi.org/10.1007/s11106-005-0062-x

  22. Zaleta, O.M., Povstyanoy, O.Y., Ribeiro, L.F., Redko, R.G., Bozhko, T.Y., Chetverzhuk, T.I. Automation of optimization synthesis for modular technological equipment. J. Eng. Sci. (Ukraine), 10(1), A6–A14 (2023). https://doi.org/10.21272/jes.2023.10(1).a2

  23. Balasankar, A., et al.: Recent advances in the preparation and performance of porous titanium-based anode materials for sodium-ion batteries. Energies 15(24), 9495 (2022). https://doi.org/10.3390/en15249495

    Article  Google Scholar 

  24. Oh, I.H., Nomura, N., Masahashi, N., Hanada, S.: Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Mater. 49, 1197–1202 (2003). https://doi.org/10.1016/j.scriptamat.2003.08.018

    Article  Google Scholar 

  25. Korniy, V.: Model and algorithm for processing color metallographic 3D images. Computing 7(1), 164–170 (2008)

    Google Scholar 

  26. Xiao, J., Qiu, G.B.: Research review of space holders of sintered titanium foams with large pores and high porosity. Mater. China 37(5), 372–378 (2018)

    Google Scholar 

  27. Pavlenko, I., Ivanov, V., Gusak, O., Liaposhchenko, O., Sklabinskyi, V.: Parameter identification of technological equipment for ensuring the reliability of the vibration separation process. In: Knapcikova L., Balog M., Perakovic D., Perisa M. (eds) 4th EAI International Conference on Management of Manufacturing Systems. EAI/Springer Innovations in Communication and Computing, pp. 261–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34272-2_24

  28. He, G., Liu, P., Tan, Q.: Porous titanium materials with entangled wire structure for load-bearing biomedical applications. J. Mech. Behav. Biomed. Mater. 5(1), 16–31 (2012). https://doi.org/10.1016/j.jmbbm.2011.09.016

    Article  Google Scholar 

  29. Bewerse, C., Emery, A.A., Brinson, L.C., Dunand, D.C.: NiTi porous structure with 3D interconnected microchannels using steel wire spaceholders. Mater. Sci. Eng., A 634, 153–160 (2015). https://doi.org/10.1016/j.msea.2014.12.088

    Article  Google Scholar 

  30. Niespodziana, K.: Synthesis and Properties of Porous Ti-20 wt.% HA Nanocomposites. J. Mater. Eng. Perform. 28(4), 2245–2255 (2019). https://doi.org/10.1007/s11665-019-03966-8

    Article  Google Scholar 

  31. Hovorun, T.P., et al.: Physical-mechanical properties and structural-phase state of nanostructured wear-resistant coatings based on nitrides of refractory metals Ti and Zr. Funct. Mater. 26(3), 548–555 (2019). https://doi.org/10.15407/fm26.03.548

    Article  Google Scholar 

  32. Lytvynenko, A., et al.: Ensuring the reliability of pneumatic classification process for granular material in a rhomb-shaped apparatus. Appl. Sci. (Switzerland) 9(8), 1604 (2019). https://doi.org/10.3390/app9081604

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Povstyanoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Povstyanoy, O., Imbirovich, N., Redko, R., Redko, O., Savaryn, P. (2024). Numerical Evaluation of the Properties of Highly Efficient Titanium Porous Materials. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-42778-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42778-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42777-0

  • Online ISBN: 978-3-031-42778-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics