Skip to main content

Calculation of the Accuracy of the Drill-String NC13 Thread Profile Turned from Difficult-to-Machine Steel

  • Conference paper
  • First Online:
Advanced Manufacturing Processes V (InterPartner 2023)

Abstract

The process of drilling wells is accompanied by significant environmental pollution. From time to time, it is proposed to make threaded connectors in drill strings from high-strength and stainless steel to reduce emissions. Such steels are difficult to machine, requiring negative rake angles of threading lathe cutters. The article proposes an algorithm for calculating the accuracy of the thread profile to determine the possibility of turning it using such cutters. The result of the predictive calculation proved that using a tool with a rake angle of −7° for turning an NC13 drill thread can lead to a deviation from the nominal value of the half-profile angle, which is 40% of the size tolerance. It was shown that such a deviation could be avoided if a tool with a zero rake angle was used on the lust finish infeed of 0.035 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liakh, M., et al.: Environmentally-efficient approaches to oil and gas producing sites. In: E3S Web of Conferences, vol. 280, p. 09002 (2021). https://doi.org/10.1051/e3sconf/202128009002

  2. Lyu, H.M., Sun, W.J., Shen, S.L., Zhou, A.N.: Risk assessment using a new consulting process in fuzzy AHP. J. Constr. Eng. Manag. 146(3), 04019112 (2020). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001757

    Article  Google Scholar 

  3. Poberezhna, L., Shkitsa, L., Poberezhnyi, L., Popovych, P., Brych, V., Shevchuk, O.: Assessment of environmental risks using elements of fuzzy logic. In: 2022 12th International Conference on Advanced Computer Information Technologies, ACIT 2022, pp. 219−222 (2022). https://doi.org/10.1109/ACIT54803.2022.9913179

  4. Arkhypova, L.M., Mandryk, O.M., Moskalchuk, N.M., Prykhodko, M.M., Radlovska, K.O.: Renewable energy resources in the system of sustainable development of Carpathian region of Ukraine. J. Phys. Conf. Ser. 1781, 012010 (2021). https://doi.org/10.1088/1742-6596/1781/1/012010

    Article  Google Scholar 

  5. Kravchynskyi, R., Korchemlyuk, M., Khilchevskyi, V., Arkhypova, L., Mykhailyuk, I., Mykhailyuk, J.: Spatial-factorial analysis of background status of the Danube River basin state on the northeastern slops of the Ukrainian Carpathians. J. Phys. Conf. Ser. 1781(1), 012011 (2021). https://doi.org/10.1088/1742-6596/1781/1/012011

    Article  Google Scholar 

  6. An, Q.L., Guo, G.G., Zheng, X.H., Chen, M., Liu, G., Zhang, Y.S.: Experimental study on cutting characteristics for buttress thread turning of 13%Cr stainless steel. Key Eng. Mater. 443, 262–267 (2010). https://doi.org/10.4028/www.scientific.net/KEM.443.262

    Article  Google Scholar 

  7. Shkitsa, L.Y., Kornuta, V.A., Kornuta, O.V., Bekish, I.O.: The model of informational space for innovation and design activities in the university. Sci. Innov. 15(6), 14–22 (2019). https://doi.org/10.15407/scine15.06.014

    Article  Google Scholar 

  8. Kiyko, S., Druzhinin, E., Prokhorov, O., Haidabrus, B.: Multi-agent model of energy consumption at the metallurgical enterprise. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2020. LNME, pp. 156–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50794-7_16

    Chapter  Google Scholar 

  9. Shkitsa, L., Kornuta, V., Kornuta, O., Bekish, I., Bui, V.: Information support of design innovation activity of the technical university. Manag. Syst. Prod. Eng. 28(2), 127–132 (2020). https://doi.org/10.2478/mspe-2020-0019

    Article  Google Scholar 

  10. Dubei, O.Y., Tutko, T.F., Ropyak, L.Y., Shovkoplias, M.V.: Development of analytical model of threaded connection of tubular parts of chrome-plated metal structures. Metallofiz. Noveishie Tekhnologii 44, 251–272 (2022). https://doi.org/10.15407/mfint.44.02.0251

    Article  Google Scholar 

  11. Shats’kyi, I.P., Lyskanych, O.M., Kornuta, V.A.: Combined deformation conditions for fatigue damage indicator and well-drilling tool joint. Strength Mater. 48, 469–472 (2016). https://doi.org/10.1007/s11223-016-9786-8

    Article  Google Scholar 

  12. Shatskyi, I., Ropyak, L., Velychkovych, A.: Model of contact interaction in threaded joint equipped with spring-loaded collet. Eng. Solid Mech. 8(4), 301–312 (2020). https://doi.org/10.5267/j.esm.2020.4.002

    Article  Google Scholar 

  13. Zhu, X., Zhang, Z.: Design of an ultra-high torque double shoulder drill-pipe tool joint for extended reach wells. Nat. Gas. Ind. 4(5), 374–381 (2017). https://doi.org/10.1016/j.ngib.2017.10.002

    Article  Google Scholar 

  14. Pryhorovska, T., Ropyak, L.: Machining error influence on stress state of conical thread joint details. In: Proceedings of the International Conference on Advanced Optoelectronics and Lasers, CAOL 2019, pp. 493–497 (2019). https://doi.org/10.1109/CAOL46282.2019.9019544

  15. Ivanov, V.: Process-oriented approach to fixture design. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing, pp. 42–50. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_5

    Chapter  Google Scholar 

  16. Shats’kyi, I.P., Shopa, V.M., Velychkovych, A.S.: Development of full-strength elastic element section with open shell. Strength Mater. 53, 277–282 (2021). https://doi.org/10.1007/s11223-021-00286-y

    Article  Google Scholar 

  17. Dutkiewicz, M., Velychkovych, A., Shatskyi, I., Shopa, V.: Efficient model of the interaction of elastomeric filler with an open shell and a chrome-plated shaft in a dry friction damper. Materials 15, 4671 (2022). https://doi.org/10.3390/ma15134671

    Article  Google Scholar 

  18. Sonawane, G.D., Sargade, V.G.: Machinability study of duplex stainless steel 2205 during dry turning. Int. J. Precis. Eng. Manuf. 21, 969–981 (2020). https://doi.org/10.1007/s12541-019-00305-8

    Article  Google Scholar 

  19. Kusyi, Y.M., Stupnytskyy, V.V., Kuk, A.M., Topilnytskyy, V.G.: Development of the fundamental diagram of the formation and transformation of the products properties during their manufacturing. J. Phys. Conf. Ser. 1781(1), 012027 (2021)

    Article  Google Scholar 

  20. Kusyj, J., Kuk, A.: A centrifugal vibration strengthening method devised to improve technological reliability of machine parts. Eastern-Eur. J. Enterp. Technol. 1(7), 41–51 (2015)

    Google Scholar 

  21. Kusyi, Y., Stupnytskyy, V.: Optimization of the technological process based on analysis of technological damageability of castings. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2020. LNME, pp. 276–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50794-7_27

    Chapter  Google Scholar 

  22. Zhang, G., Guo, C.: Modeling flank wear progression based on cutting force and energy prediction in turning process. Procedia Manuf. 5, 536–545 (2016). https://doi.org/10.1016/j.promfg.2016.08.044

    Article  Google Scholar 

  23. Zaleta, O.M., Povstyanoy, O.Y., Ribeiro, L.F., Redko, R.G., Bozhko, T.Y., Chetverzhuk, T.I.: Automation of optimization synthesis for modular technological equipment. J. Eng. Sci. 10(1), A6–A14 (2023). https://doi.org/10.21272/jes.2023.10(1).a2

    Article  Google Scholar 

  24. Ivchenko, O., et al.: Method for an effective selection of tools and cutting conditions during precise turning of non-alloy quality steel C45. Materials 15(2), 505 (2022). https://doi.org/10.3390/ma15020505

    Article  Google Scholar 

  25. Chalyj, V., Moroz, S., Tkachuk, A., Zablotskyi, V., Trokhymchuk, I., Stelmakh, A.: Formation of bearings parts waviness in centerless mortise grinding on rigid supports. J. Eng. Sci. 10(1), A15–A21 (2023). https://doi.org/10.21272/jes.2023.10(1).a3

    Article  Google Scholar 

  26. Kusyi, Y., Kuzin, O., Kuzin, N.: The dependence of intergrain damageability of casting on the technological treatment route. Eastern-Eur. J. Enterp. Technol. 1(5(79)), 39–47 (2016). https://doi.org/10.15587/1729-4061.2016.59845

  27. Kusyi, Y.: Technological inheritability of product material using the criterion of technological damageability. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) DSMIE 2021. LNME, pp. 52–61. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77719-7_6

    Chapter  Google Scholar 

  28. Kusyi, Y.M., Kuk, A.M.: Investigation of the technological damageability of castings at the stage of design and technological preparation of the machine Life Cycle. J. Phys. Conf. Ser. 1426(1), 012034 (2020)

    Article  Google Scholar 

  29. Khoshdarregi, M.R., Altintas, Y.: Generalized modeling of chip geometry and cutting forces in multi-point thread turning. Int. J. Mach. Tools Manuf. 98, 21–32 (2015). https://doi.org/10.1016/j.ijmachtools.2015.08.005

    Article  Google Scholar 

  30. Koleva, S., Enchev, M., Szecsi, T.: Compensation of the deviations caused by mechanical deformations during machining of threads. Procedia Manuf. 13, 480–486 (2017). https://doi.org/10.1016/j.promfg.2017.09.066

    Article  Google Scholar 

  31. Baizeau, T., Campocasso, S., Fromentin, G., Rossi, F., Poulachon, G.: Effect of rake angle on strain field during orthogonal cutting of hardened steel with c-BN tools. Procedia CIRP 31, 166–171 (2015). https://doi.org/10.1016/j.procir.2015.03.089

    Article  Google Scholar 

  32. Yanda, H., Ghani, J.A., Haron, C.H.C.: Effect of rake angle on stress, strain and temperature on the edge of carbide cutting tool in orthogonal cutting using FEM simulation. ITB J. Eng. Technol. Sci. 42(2), 179–194 (2010). https://doi.org/10.5614/itbj.eng.sci.2010.42.2.6

    Article  Google Scholar 

  33. Onysko, O., Panchuk, V., Kopey, V.B., Havryliv, Y., Schuliar, I.: Investigation of the influence of the cutter-tool rake angle on the accuracy of the conical helix in the tapered thread machining. In: International Conference of Applied Sciences. Journal of Physics: Conference Series, vol. 1781, p. 012028 (2021). https://doi.org/10.1088/1742-6596/1781/1/012028

  34. Threading. Tread turning tools. Sundwik Coromant, https://www.sandvik.coromant.com/ru-ru/tools/threading-tools/thread-turning-tools. Accessed 13 Feb 2023

  35. Berglind, L., Ziegert, J.: Modulated tool path (MTP) machining for threading applications. Procedia Manuf. 1, 546–555 (2015). https://doi.org/10.1016/j.promfg.2015.09.029

    Article  Google Scholar 

  36. Costa, C.E., Polli, M.L.: Effects of the infeed method on thread turning of AISI 304L stainless steel. J. Braz. Soc. Mech. Sci. Eng. 43, 253 (2021). https://doi.org/10.1007/s40430-021-02978-7

    Article  Google Scholar 

  37. Hovorun, T.P., et al.: Physical-mechanical properties and structural-phase state of nanostructured wear-resistant coatings based on nitrides of refractory metals Ti and Zr. Funct. Mater. 26(3), 548–555 (2019). https://doi.org/10.15407/fm26.03.548

    Article  Google Scholar 

  38. Pavlenko, I., et al.: Using regression analysis for automated material selection in smart manufacturing. Mathematics 10(11), 1888 (2022). https://doi.org/10.3390/math10111888

    Article  Google Scholar 

  39. Onysko, O., Medvid, I., Panchuk, V., Rodic, V., Barz, C.: Geometric modeling of lathe cutters for turning high-precision stainless steel tapered threads. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds.) Advances in Design, Simulation and Manufacturing IV, pp. 472–480. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77719-7_47

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Ministry of Science and Education of Ukraine for the grant to implement project D-2-22-P (RK 0122U002082). The team of authors expresses their gratitude to the reviewers for valuable recommendations that have been taken into account to improve significantly the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleh Onysko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Onysko, O., Kopei, V., Vytvytskyi, V., Vriukalo, V., Lukan, T. (2024). Calculation of the Accuracy of the Drill-String NC13 Thread Profile Turned from Difficult-to-Machine Steel. In: Tonkonogyi, V., Ivanov, V., Trojanowska, J., Oborskyi, G., Pavlenko, I. (eds) Advanced Manufacturing Processes V. InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-42778-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42778-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42777-0

  • Online ISBN: 978-3-031-42778-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics