Skip to main content

Trends in Evolution of the Energy Band Structure of Chalcopyrite CuBIIIXVI2 Compounds with Variation of the B and X Compositions

  • Conference paper
  • First Online:
6th International Conference on Nanotechnologies and Biomedical Engineering (ICNBME 2023)

Abstract

Bulk and nanostructured AIBIIIXVI2 chalcopyrite materials, including quantum dots on their basis, are widely used in the development of optical filters, solar cells, optoelectronic devices and photocatalysis. Physical properties of both bulk and nanostructured chalcopyrite compounds are determined by their energy band structure. The optical spectroscopy is one of the powerful and nondestructive method for determination of physical properties. This paper presents results of investigation of optical reflectance spectra of CuBIIIXVI2 compounds with B = Al, Ga, and In, and X = S and Se, performed in a wide spectral range from 1.7 eV to 7.5 eV. The measured spectral position of peaks in the reflectance spectra are assigned to electronic transitions in different points of the Brillouin zone, on the basis of the electronic band structures of these materials deduced from theoretical calculation performed in previous works. Trends in the evolution of the energy band structure with changing the composition of materials have been revealed, which are important for practical applications. Apart from that, the observed trends in the evolution of the energy band structure of chalcopyrite CuBIIIXVI2 compounds with variation of their composition are helpful for a right assignment of the observed peaks in the reflectance spectra to respective electronic transitions in various points of the Brillouin zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Horinaka, H., Sonomura, H., Miyauchi, T.: Optical band-pass filter using accidental isotropy and optical activity of AgGaSe2. Jpn. J. Appl. Phys. 24, 463–466 (1985). https://doi.org/10.1143/JJAP.24.463

    Article  Google Scholar 

  2. Horinaka, H., Yamamoto, N., Hamaguchi, H.: New approach to highly efficient raman spectroscopy using a laser diode and AgGaSe2 Crystal Filter. Appl. Spectro. 46, 379–381 (1992). https://opg.optica.org/as/abstract.cfm?URI=as-46-2-379

  3. Yamomoto, N., Horinaka, H., Ceo, Y., Hamaguchi, H.: Application of AgGaS2 filter to easy raman spectroscopy. Analy. Sci. 7, 581–584 (1991). https://doi.org/10.2116/ANALSCI.7.SUPPLE_581

    Article  Google Scholar 

  4. Susaki, M., Yamamoto, N., Horinaka, H., Huang, W.Z., Cho, Y.: Performance of AgGaS2 crystal filter for Raman spectroscopy. Jpn. J. Appl. Phys. 33, 1561–1564 (1994). https://doi.org/10.1143/JJAP.33.1561

    Article  Google Scholar 

  5. Syrbu, N.N., Dorogan, A.V., Masnik, A., Ursaki, V.V.: Birefringence of CuGaxAl1-xSe2 crystals. J. Opt. 13, 035703 (2011). https://doi.org/10.1088/2040-8978/13/3/035703

    Article  Google Scholar 

  6. Horinaka, H., Yamamoto, N.: Optical band-elimination filter made of optically active uniaxial crystal of AgGaSe2 for AlGaAs semiconductor laser. Proc. SPIE 1319, 592 (1990). https://doi.org/10.1117/12.34869

    Article  Google Scholar 

  7. Panthani, M.G., et al.: Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) nanocrystal ‘Inks’ for printable photovoltaics. J. Am. Chem. Soc. 130(49), 16770–16777 (2008). https://doi.org/10.1021/ja805845q

    Article  Google Scholar 

  8. Repins, I., et al.: 19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor, Prog. Photovoltaics 16, 235–239 (2008). https://doi.org/10.1002/pip.822

  9. Jackson, P., et al.: New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics 19, 894–897 (2011). https://doi.org/10.1002/pip.1078

    Article  Google Scholar 

  10. Roberts, D.A.: Dispersion equations for nonlinear optical crystals: KDP, AgGaSe2, and AgGaS2. Appl. Optics 35, 4677–4688 (1996). https://doi.org/10.1364/AO.35.004677

    Article  Google Scholar 

  11. Xu, Q.-T., Sun, Z.-D., Chi, Y., Xue, H.-G., Guo, S.-P.: Monoclinic gallium selenide: an AgGaS2-type structure variant with balanced infrared nonlinear optical performance. J. Mater. Chem. C 7, 11752–11756 (2019). https://doi.org/10.1039/C9TC03909K

    Article  Google Scholar 

  12. Luo, X., Li, Z., Guo, Y., Yao, J., Wu, Y.: Recent progress on new infrared nonlinear optical materials with application prospect. J. Solid State Chem. 270, 674–687 (2019). https://doi.org/10.1016/j.jssc.2018.12.036

    Article  Google Scholar 

  13. Wu, J., et al.: Investigation of the thermal properties and crystal growth of the nonlinear optical crystals AgGaS2 and AgGaGeS4. Cryst. Growth Des. 20, 3140–3153 (2020). https://doi.org/10.1021/acs.cgd.0c00018

    Article  Google Scholar 

  14. Lopez-Garcıa, J., Trigo, J.F., Ferrer, I.J., Guillen, C., Herrero, J.: CuAlxGa1-xSe2 thin films for photovoltaic applications: structural, electrical and morphological analysis. Mater. Res. Bull. 47, 2518–2524 (2012). https://doi.org/10.1016/j.materresbull.2012.05.004

    Article  Google Scholar 

  15. Lopez-Garcia, J., Montero, J., Maffiotte, C., Guillen, C., Herrero, J.: Crystallization of wide-bandgap CuAlSe2 thin films deposited on antimony doped tin oxide substrates. J. Alloy. Compd. 648, 104–110 (2015). https://doi.org/10.1016/j.jallcom.2015.05.196

    Article  Google Scholar 

  16. Chen, B., Pradhan, N., Zhong, H.: From large-scale synthesis to lighting device applications of ternary I−III−VI semiconductor nanocrystals: inspiring greener material emitters. J. Phys. Chem. Lett. 9, 435–445 (2018). https://doi.org/10.1021/acs.jpclett.7b03037

    Article  Google Scholar 

  17. Kim, J.H., Yang, H.: High-efficiency Cu−In−S quantum-dotlight-emitting device exceeding 7%. Chem. Mater. 28, 6329–6335 (2016). https://doi.org/10.1021/acs.chemmater.6b02669

    Article  Google Scholar 

  18. Guijarro, N., et al.: Bottom-up approach toward all-solution-processed high-efficiency Cu(In, Ga)S2 photocathodes for solar water splitting. Adv. Energy Mater. 6, 1501949 (2016). https://doi.org/10.1002/aenm.201501949

    Article  Google Scholar 

  19. Fan, X.B., et al.: Nonstoichiometric CuxInyS quantum dots for efficient photocatalytic hydrogen evolution. Chemsuschem 10, 4833–4838 (2017). https://doi.org/10.1002/cssc.201701950

    Article  Google Scholar 

  20. Sugan, S., Baskar, K., Dhanasekaran, R.: Structural, morphological and optical studies on CuAlS2 and CuAlSe2 nanorods prepared by hydrothermal method. J. Alloy. Compd. 645, 85–89 (2015). https://doi.org/10.1016/j.jallcom.2015.04.129

    Article  Google Scholar 

  21. Poulose, A.C., et al.: Synthesis of CuAlS2 nanocrystals and their application in bio-imaging. Mater. Express 2(2), 94–104 (2012). https://doi.org/10.1166/mex.2012.1058

  22. Lu, R., Olvera, A., Bailey, T.P., Uher, C., Poudeu, P.F.P.: CuAlSe2 inclusions trigger dynamic Cu+ ion depletion from the Cu2Se matrix enabling high thermoelectric performance. ACS Appl. Mater. Interf. 12(52), 58018–58027 (2020). https://doi.org/10.1021/acsami.0c17659

    Article  Google Scholar 

  23. Bhattacharyya, B., Pandit, T., Rajasekar, G.P., Pandey, A.: Shift in visible emitting CuAlS2 based quantum dots. Phys. Chem. Lett. 9(15), 4451–4456 (2018). https://doi.org/10.1021/acs.jpclett.8b01787

    Article  Google Scholar 

  24. Zhou, N., et al.: Activating earth-abundant element-based colloidal copper chalcogenide quantum dots for photodetector and optoelectronic synapse applications. ACS Mater. Lett. 5(4), 1209–1218 (2023). https://doi.org/10.1021/acsmaterialslett.3c00035

    Article  Google Scholar 

  25. Mukherjee, A., Dutta, P., Bhattacharyya, B., Rajasekar, G.P., Simlandy, A.K., Pandey, A.: Ultrafast spectroscopic investigation of the artificial photosynthetic activity of CuAlS2/ZnS quantum dots. Nano Select 2, 958–966 (2021). https://doi.org/10.1002/nano.202000219

  26. Chichibu, S., et al.: Growth of Cu(AlxGa1-x)SSe pentenary alloy crystals by iodine chemical vapor transport method. J. Cryst. Growth 140, 388–397 (1994). https://doi.org/10.1016/0022-0248(94)90315-8

    Article  Google Scholar 

  27. Mașnik, A., Zalamai, V., Ursaki, V.: Electronic transitions and energy band structure of CuGaxAl1-xSe2 crystals. Opt. Mater. 118, 111221 (2021). https://doi.org/10.1016/j.optmat.2021.111221

    Article  Google Scholar 

  28. Syrbu, N.N., Tiginyanu, I.M., Nemerenco, L.L., Ursaki, V.V., Tezlevan, V.E., Zalamai, V.V.: Exciton spectra, valence band splitting, and energy band structure of CuGaXIn1-XS2 and CuGaXIn1-XSe2 crystals. J. Phys. Chem. Solids 66, 1974–1977 (2005). https://doi.org/10.1016/j.jpcs.2005.09.029

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by National Agency for Research and Development of Moldova under the Grant #22.80009.5007.20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Zalamai .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflicts of interest. The funding sponsors had no role in the following actions: the design of the study; the collection, analyses, or interpretation of data; the writing of the manuscript, and the decision to publish the results.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maşnic, A., Zalamai, V., Ursaki, V. (2024). Trends in Evolution of the Energy Band Structure of Chalcopyrite CuBIIIXVI2 Compounds with Variation of the B and X Compositions. In: Sontea, V., Tiginyanu, I., Railean, S. (eds) 6th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2023. IFMBE Proceedings, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-031-42775-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42775-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42774-9

  • Online ISBN: 978-3-031-42775-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics