Skip to main content

Large-Scale Formal Proof for the Working Mathematician—Lessons Learnt from the ALEXANDRIA Project

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14101))

Included in the following conference series:

  • 261 Accesses

Abstract

ALEXANDRIA is an ERC-funded project that started in 2017, with the aim of bringing formal verification to mathematics. The past six years have seen great strides in the formalisation of mathematics and also in some relevant technologies, above all machine learning. Six years of intensive formalisation activity seem to show that even the most advanced results, drawing on multiple fields of mathematics, can be formalised using the tools available today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.newton.ac.uk/event/bpr/.

  2. 2.

    https://www.ma.imperial.ac.uk/~buzzard/xena/.

  3. 3.

    An email from Angeliki proposing to prove Szemerédi’s regularity lemma is dated 8 July 2021. The formalisation was done by 5 November; Roth, 28 December.

  4. 4.

    https://www.isa-afp.org.

  5. 5.

    https://behemoth.cl.cam.ac.uk/search/.

  6. 6.

    https://behemoth.cl.cam.ac.uk/ipc/.

References

  1. Boolos, G.S.: Saving Frege from contradiction. In: Logic, Logic, and Logic, pp. 171–182. Harvard University Press (1998)

    Google Scholar 

  2. Bordg, A., Doña Mateo, A.: Encoding dependently-typed constructions into simple type theory. In: Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, pp. 78–89. Association for Computing Machinery (2023). https://doi.org/10.1145/3573105.3575679

  3. Bordg, A., Paulson, L., Li, W.: Simple type theory is not too simple: Grothendieck’s schemes without dependent types. Exp. Math. 31(2), 364–382 (2022). https://doi.org/10.1080/10586458.2022.2062073

    Article  MathSciNet  MATH  Google Scholar 

  4. de Bruijn, N.G.: AUTOMATH, a language for mathematics. Tech. Rep. 68-WSK-05, Technical University Eindhoven (Nov 1968)

    Google Scholar 

  5. de Bruijn, N.G.: The mathematical language AUTOMATH, its usage, and some of its extensions. In: Laudet, M. (ed.) Proceedings of the Symposium on Automatic Demonstration, pp. 29–61. Springer LNM 125, Versailles, France (Dec 1968)

    Google Scholar 

  6. Buzzard, K., Hughes, C., Lau, K., Livingston, A., Mir, R.F., Morrison, S.: Schemes in lean. Experim. Math. 31(2), 355–363 (2022). https://doi.org/10.1080/10586458.2021.1983489

  7. Castelvecchi, D.: Mathematicians welcome computer-assisted proof in ‘grand unification’ theory. Nature 595, 18–19 (2021)

    Article  Google Scholar 

  8. Dillies, Y., Mehta, B.: Formalizing Szemerédi’s regularity lemma in Lean. In: Andronick, J., de Moura, L. (eds.) 13th International Conference on Interactive Theorem Proving, pp. 9:1–9:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  9. Džamonja, M., Koutsoukou-Argyraki, A., Paulson, L.C.: Formalising ordinal partition relations using Isabelle/HOL. Exp. Math. 31(2), 383–400 (2022). https://doi.org/10.1080/10586458.2021.1980464

    Article  MathSciNet  MATH  Google Scholar 

  10. Edmonds, C., Koutsoukou-Argyraki, A., Paulson, L.C.: Formalising Szemerédi’s regularity lemma and Roth’s theorem on arithmetic progressions in Isabelle/HOL. J. Autom. Reasoning 67(1) (2023), https://doi.org/10.1007/s10817-022-09650-2

  11. Edmonds, C., Paulson, L.C.: A modular first formalisation of combinatorial design theory. In: Kamareddine, F., Sacerdoti Coen, C. (eds.) CICM 2021. LNCS (LNAI), vol. 12833, pp. 3–18. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81097-9_1

    Chapter  Google Scholar 

  12. Edmonds, C., Paulson, L.C.: Formalising Fisher’s inequality: formal linear algebraic proof techniques in combinatorics. In: Andronick, J., de Moura, L. (eds.) 13th International Conference on Interactive Theorem Proving (ITP 2022), vol. 237, pp. 11:1–11:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.11

  13. Erdős, P., Straus, E.G.: On the irrationality of certain series. Pacific J. Math. 55(1), 85–92 (1974). https://doi.org/pjm/1102911140

  14. Erdős, P., Milner, E.C.: A theorem in the partition calculus. Can. Math. Bull. 15(4), 501–505 (1972). https://doi.org/10.4153/CMB-1972-088-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Erdős, P., Milner, E.C.: A theorem in the partition calculus corrigendum. Can. Math. Bull. 17(2), 305 (1974). https://doi.org/10.4153/CMB-1974-062-6

    Article  Google Scholar 

  16. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 333–333. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87827-8_28

    Chapter  Google Scholar 

  17. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_14

    Chapter  Google Scholar 

  18. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Four decades of Mizar. J. Autom. Reasoning 55(3), 191–198 (Oct 2015). https://doi.org/10.1007/s10817-015-9345-1

  19. Hales, T., et al.: A formal proof of the Kepler conjecture. Forum Math. Pi 5, e2 (2017). https://doi.org/10.1017/fmp.2017.1

    Article  MathSciNet  MATH  Google Scholar 

  20. Hančl, J.: Irrational rapidly convergent series. Rendiconti del Seminario Matematico della Università di Padova 107, 225–231 (2002). http://eudml.org/doc/108582

  21. Hančl, J., Rucki, P.: The transcendence of certain infinite series. Rocky Mountain J. Math. 35(2), 531–537 (2005). https://doi.org/10.1216/rmjm/1181069744

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, A.Q., et al.: Thor: Wielding hammers to integrate language models and automated theorem provers. In: Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  23. Jiang, A.Q., et al.: Draft, sketch, and prove: guiding formal theorem provers with informal proofs. In: Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=SMa9EAovKMC

  24. Jutting, L.: Checking Landau’s “Grundlagen” in the AUTOMATH System. Ph.D. thesis, Eindhoven University of Technology (1977). https://doi.org/10.6100/IR23183

  25. Koutsoukou-Argyraki, A.: Formalising mathematics — in praxis; a mathematician’s first experiences with Isabelle/HOL and the why and how of getting started. Jahresbericht der Deutschen Mathematiker-Vereinigung 123(1), 3–26 (2021). https://doi.org/10.1365/s13291-020-00221-1

  26. Koutsoukou-Argyraki, A., Bakšys, M., Edmonds, C.: A formalisation of the Balog-Szemerédi-Gowers theorem in Isabelle/HOL. In: 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023, pp. 225–238. Association for Computing Machinery (2023). https://doi.org/10.1145/3573105.3575680

  27. Koutsoukou-Argyraki, A., Li, W., Paulson, L.C.: Irrationality and transcendence criteria for infinite series in Isabelle/HOL. Exp. Math. 31(2), 401–412 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kunčar, O., Popescu, A.: From types to sets by local type definition in higher-order logic. J. Autom. Reasoning 62(2), 237–260 (2019). https://doi.org/10.1007/s10817-018-9464-6

  29. Larson, J.A.: A short proof of a partition theorem for the ordinal \(\omega ^\omega \). Annals Math. Logic 6(2), 129–145 (1973). https://doi.org/10.1016/0003-4843(73)90006-5

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, W., Paulson, L.C.: Counting polynomial roots in Isabelle/HOL: a formal proof of the Budan-Fourier theorem. In: 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, pp. 52–64. Association for Computing Machinery (2019). https://doi.org/10.1145/3293880.3294092

  31. Li, W., Paulson, L.C.: Evaluating winding numbers and counting complex roots through Cauchy indices in Isabelle/HOL. J. Autom. Reasoning (Apr 2019). https://doi.org/10.1007/s10817-019-09521-3

  32. Li, W., Yu, L., Wu, Y., Paulson, L.C.: Isarstep: a benchmark for high-level mathematical reasoning. In: 9th International Conference on Learning Representations, ICLR 2021. OpenReview.net (2021). https://openreview.net/forum?id=Pzj6fzU6wkj

  33. Paulson, L.C.: Wetzel: formalisation of an undecidable problem linked to the continuum hypothesis. In: Intelligent Computer Mathematics: 15th International Conference, CICM 2022, pp. 92–106. Springer (2022). https://doi.org/10.1007/978-3-031-16681-5_6

  34. Peltier, N., Sofronie-Stokkermans, V. (eds.): IJCAR 2020. LNCS (LNAI), vol. 12166. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9

    Book  Google Scholar 

  35. Stathopoulos, Y., Koutsoukou-Argyraki, A., Paulson, L.: Developing a concept-oriented search engine for Isabelle based on natural language: technical challenges. In: 5th Conference on Artificial Intelligence and Theorem Proving (2020). http://aitp-conference.org/2020/abstract/paper_9.pdf

  36. Todorčević, S.: Introduction to Ramsey Spaces. Princeton University Press (2010)

    Google Scholar 

  37. de Vilhena, P.E., Paulson, L.C.: Algebraically closed fields in Isabelle/HOL. In: Peltier and Sofronie-Stokkermans [34], pp. 204–220

    Google Scholar 

  38. Voevodsky, V.: The origins and motivations of univalent foundations. The Institute Letter, pp. 8–9 (Summer 2014). https://www.ias.edu/ideas/2014/voevodsky-origins

  39. Wang, H.: Toward mechanical mathematics. IBM J. Res. Dev. 4(1), 2–22 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  40. Whitehead, A.N., Russell, B.: Principia Mathematica. Cambridge University Press (1962), paperback edition to *56, abridged from the 2nd edition (1927)

    Google Scholar 

  41. Wu, Y., et al.: Autoformalization with large language models. In: Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the ERC Advanced Grant ALEXANDRIA (Project GA 742178). Chelsea Edmonds, Angeliki Koutsoukou-Argyraki and Wenda Li provided numerous helpful comments and suggestions.

For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence C. Paulson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paulson, L.C. (2023). Large-Scale Formal Proof for the Working Mathematician—Lessons Learnt from the ALEXANDRIA Project. In: Dubois, C., Kerber, M. (eds) Intelligent Computer Mathematics. CICM 2023. Lecture Notes in Computer Science(), vol 14101. Springer, Cham. https://doi.org/10.1007/978-3-031-42753-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42753-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42752-7

  • Online ISBN: 978-3-031-42753-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics