Skip to main content

Abstract

Technology is developing at a dizzying pace to make our lives easier. Among other innovations, quantum computing, which is based on quantum mechanics, is evolving with the aim of solving all the problems that traditional computing is unable to solve. Quantum computing, unlike traditional computing, relies on qubits (quantum bits) that can be in superposition of the values 0 and 1, as well as other fundamentals, such as interference or entanglement. This paper analyses the use of quantum computing for image processing, testing the efficiency when quantum computers are employed. To do that, the Flexible Representation of Quantum Images model of image representation is implemented in a quantum simulator to solve a particular problem. Therefore, images of machined parts are processed in order to detect the edges of the mask what can determine the presence of burrs. Detecting burrs improves the surface finish and, in turn, the quality of industrial processes. The results of the proof of concept show that, although compared to traditional computing, quantum algorithms are not yet efficient enough to match or even surpass classical algorithms, they are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, F., Ahmad, F., Kumaran, S.T., Danish, M., Kurniawan, R., Ali, S.: Automated 3d burr detection in cast manufacturing using sparse convolutional neural networks. J. Intell. Manuf. 34, 303–314 (2023). https://doi.org/10.1007/s10845-022-02036-6

    Article  Google Scholar 

  2. Ahmed, F., Ahmad, F., Kumaran, S.T., Danish, M., Kurniawan, R., Ali, S.: Development of cryogenic assisted machining strategy to reduce the burr formation during micro-milling of ductile material. J. Manuf. Process. 85, 43–51 (2023). https://doi.org/10.1016/j.jmapro.2022.11.036

    Article  Google Scholar 

  3. Baig, A., Jaffery, S.H.I., Khan, M.A., Alruqi, M.: Statistical analysis of surface roughness, burr formation and tool wear in high speed micro milling of inconel 600 alloy under cryogenic, wet and dry conditions. Micromachines 14(1) (2023)

    Google Scholar 

  4. Cafaro, C., Alsing, P.M.: Qubit geodesics on the bloch sphere from optimal-speed hamiltonian evolutions. Classical and Quantum Gravity 40(11) (2023). https://doi.org/10.1088/1361-6382/acce1a

  5. Riego del Castillo, V., Sánchez-González, L., Álvarez-Aparicio, C.: Classification of burrs using contour features of image in milling workpieces. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds.) HAIS 2021. LNCS (LNAI), vol. 12886, pp. 209–218. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86271-8_18

    Chapter  Google Scholar 

  6. del Castillo, V.R., Sánchez-González, L., Fernández-Robles, L., Castejón-Limas, M.: Burr detection using image processing in milling workpieces. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020), pp. 751–759. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_72

    Chapter  Google Scholar 

  7. De Vincentiis, M., Cassano, F., Pagano, A., Piccinno, A.: Qai4ase: quantum artificial intelligence for automotive software engineering, pp. 19–21 (2022). https://doi.org/10.1145/3549036.3562059

  8. Ganjalizadeh, V., Meena, G.G., Stott, M.A., Hawkins, A.R., Schmidt, H.: Machine learning at the edge for ai-enabled multiplexed pathogen detection. Sci. Reports 13(1) (2023). https://doi.org/10.1038/s41598-023-31694-6

  9. Guijo, D., et al.: Quantum artificial vision for defect detection in manufacturing (2022)

    Google Scholar 

  10. Guo, Q., Zhou, D., Xu, F., Wu, Z.: Study on the application of a new surface burr treatment process. Alex. Eng. J. 71, 1–11 (2023). https://doi.org/10.1016/j.aej.2023.03.032

    Article  Google Scholar 

  11. Huo, F., Liu, Y., Wang, D., Sun, B.: Bloch quantum artificial bee colony algorithm and its application in image threshold segmentation. SIViP 11(8), 1585–1592 (2017). https://doi.org/10.1007/s11760-017-1123-6

    Article  Google Scholar 

  12. Jia, L., Wang, Y.: Research on industrial production defect detection method based on machine vision technology in industrial internet of things. Traitement du Signal 39(6), 2061–2068 (2022). https://doi.org/10.18280/ts.390618

  13. Jin, S.Y., Pramanik, A., Basak, A.K., Prakash, C., Shankar, S., Debnath, S.: Burr formation and its treatments-a review. Int. J. Mach. Tools Manufac. 107 (2020). https://doi.org/10.1007/s00170-020-05203-2

  14. Kumar, M., Bajpai, V.: Investigation of top burr formation in micromilling for surface quality improvement. J. Mater. Eng. Performance 32 (2023). https://doi.org/10.1007/s11665-022-07299-x

  15. Larasati, H.T., Le, T.T.H., Kim, H.: Trends of quantum computing applications to computer vision, pp. 7–12 (2022). https://doi.org/10.1109/PlatCon55845.2022.9932103

  16. Li, T., Zhao, P., Zhou, Y., Zhang, Y.: Quantum image processing algorithm using line detection mask based on NEQR. Entropy (Basel, Switzerland) 25(5) (2023). https://doi.org/10.3390/e25050738

  17. Liang, C., Gong, Y., Li, P., Sun, J.e.a.: Subsurface deformation and burr formation in nickel-based single-crystal superalloy under grinding. Arch. Civil Mech. Eng. 23 (2023). https://doi.org/10.1007/s43452-023-00640-8

  18. Paiva Silva, G., Bacci da Silva, M., de Oliveira, D.: Influence of abrasive deburring in indirect tool wear measurement in micromilling of inconel 718. J. Brazilian Soc. Mech. Sci. En. 45 (2023). https://doi.org/10.1007/s40430-023-04190-1

  19. Qiskit: Your open-source toolkit for useful quantum computing (2023). https://qiskit.org/

  20. Riego, V., Sánchez-González, L., Fernández-Robles, L., Gutiérrez-Fernández, A., Strisciuglio, N.: Burr detection and classification using rustico and image processing. J. Comput. Sci. 56, 101485 (2021). https://doi.org/10.1016/j.jocs.2021.101485

    Article  Google Scholar 

  21. Roth, Y.: Quantum vision in three dimensions. Results Phys. 7, 4101–4103 (2017). https://doi.org/10.1016/j.rinp.2017.10.031

    Article  Google Scholar 

  22. Saha, S., Deb, S., Bandyopadhyay, P.P.: Tool wear induced burr formation and concomitant reduction in MQL wetting capability in micro-milling. Int. J. Mech. Sci. 245, 108095 (2023). https://doi.org/10.1016/j.ijmecsci.2022.108095

    Article  Google Scholar 

  23. Sahib, A.Y., Al Ali, M., Al Ali, M.: Investigation of early-stage breast cancer detection using quantum neural network. Int. J. Online Biomed. Eng. 19(3), 61–81 (2023). https://doi.org/10.3991/ijoe.v19i03.37573

    Article  Google Scholar 

  24. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inform. Process. 9(1), 1–11 (2010). https://doi.org/10.1007/s11128-009-0123-z.

  25. Wu, Y., Li, X., Zhu, Q., Liu, X., Wu, H., Yang, S.: An image localization system based on single photon. Computers, Mater. Continua 73(3), 6139–6149 (2022). https://doi.org/10.32604/cmc.2022.032086

  26. Yadav, R., Chakladar, N., Paul, S.: Micro-milling of ti-6al-4 v with controlled burr formation. Int. J. Mech. Sci. 231, 107582 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107582

    Article  Google Scholar 

  27. Yadav, R., Chakladar, N., Paul, S.: Modelling and experimental validation of burr control in micro milling of metals. Mater. Today Commun. 35, 106205 (2023). https://doi.org/10.1016/j.mtcomm.2023.106205

    Article  Google Scholar 

  28. Yao, X., et al.: Quantum image processing and its application to edge detection: theory and experiment Physics (2017). arXiv: Quantum

  29. Yuan, S., Venegas-Andraca, S.E., Wang, Y., Luo, Y., Mao, X.: Quantum image edge detection algorithm. Int. J. Theor. Phys. 58(9), 2823–2833 (2019). https://doi.org/10.1007/s10773-019-04166-9

    Article  MathSciNet  MATH  Google Scholar 

  30. Yulianti, L.P., Surendro, K.: Implementation of quantum annealing: A systematic review. IEEE Access 10, 73156–73177 (2022). https://doi.org/10.1109/ACCESS.2022.3188117

    Article  Google Scholar 

  31. Zannoun, H., Schoop, J.: Analysis of burr formation in finish machining of nickel-based superalloy with worn tools using micro-scale in-situ techniques. Int. J. Mach. Tools Manuf 189, 104030 (2023). https://doi.org/10.1016/j.ijmachtools.2023.104030

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Spanish Ministry of Economy and Competitiveness (grant PID2019-108277GB-C21). This work has been financially supported by the Ministry of Economic Affairs and Digital Transformation of the Spanish Government through the QUANTUM ENIA project call - Quantum Spain project, and by the European Union through the Recovery, Transformation and Resilience Plan - NextGenerationEU within the framework of the Digital Spain 2026 Agenda. We also express our grateful to Centro de Supercomputación de Castilla y León (SCAYLE) for its infrastructure support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Sánchez-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merino-Bajo, S., Sánchez-González, L., Riego, V., Matellán, V. (2023). Effectiveness of Quantum Computing in Image Processing for Burr Detection. In: García Bringas, P., et al. 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023). SOCO 2023. Lecture Notes in Networks and Systems, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-031-42529-5_10

Download citation

Publish with us

Policies and ethics