Skip to main content

Learning Representations by Crystallized Back-Propagating Errors

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14125))

Included in the following conference series:

  • 299 Accesses

Abstract

With larger artificial neural networks (ANN) and deeper neural architectures, common methods for training ANN, such as backpropagation, are key to learning success. Their role becomes particularly important when interpreting and controlling structures that evolve through machine learning. This work aims to extend previous research on backpropagation-based methods by presenting a modified, full-gradient version of the backpropagation learning algorithm that preserves (or rather crystallizes) selected neural weights while leaving other weights adaptable (or rather fluid). In a design-science-oriented manner, a prototype of a feedforward ANN is demonstrated and refined using the new learning method. The results show that the so-called crystallizing backpropagation increases the control possibilities of neural structures and interpretation chances, while learning can be carried out as usual. Since neural hierarchies are established because of the algorithm, ANN compartments start to function in terms of cognitive levels. This study shows the importance of dealing with ANN in hierarchies through backpropagation and brings in learning methods as novel ways of interacting with ANN. Practitioners will benefit from this interactive process because they can restrict neural learning to specific architectural components of ANN and can focus further development on specific areas of higher cognitive levels without the risk of destroying valuable ANN structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baddeley, A.: Oxford Psychology Series, no. 11. working memory. New York (1986)

    Google Scholar 

  2. Baddeley, A., Gathercole, S., Papagno, C.: The phonological loop as a language learning device. Psychol. Rev. 105(1), 158 (1998)

    Article  Google Scholar 

  3. Barlow, H.: Unsupervised learning. Neural Comput. 1(3), 295–311 (1989). https://doi.org/10.1162/neco.1989.1.3.295

    Article  Google Scholar 

  4. Benna, M.K., Fusi, S.: Computational principles of synaptic memory consolidation. Nat. Neurosci. 19(12), 1697–1708 (2016)

    Article  Google Scholar 

  5. Bishop, C.: Neural Networks for Pattern Recognition, p. 1. Oxford University Press, Inc., New York (1995)

    Google Scholar 

  6. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.Y.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(6), 1190–1208 (1995). www.citeseer.ist.psu.edu/byrd94limited.html

  7. Clark, R.C., Nguyen, F., Sweller, J., Baddeley, M.: Efficiency in learning: evidence-based guidelines to manage cognitive load. Perf. Improvement 45(9), 46–47 (2006). https://doi.org/10.1002/pfi.4930450920. www.onlinelibrary.wiley.com/doi/abs/10.1002/pfi.4930450920

  8. Eck, D., Schmidhuber, J.: A First Look at Music Composition using LSTM Recurrent Neural Networks. Technical Report No. IDSIA-07-02, p. 1 (2002)

    Google Scholar 

  9. Eck, D., Schmidhuber, J.: Learning the long-term structure of the blues. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 284–289. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46084-5_47

    Chapter  Google Scholar 

  10. Fahlman, S.: Faster learning variations on back-propagation: an empirical study. In: Touretszky, D., Hinton, G., Sejnowski, T. (eds.) Proceedings of the 1988 Connectionist Models Summer School, pp. 38–51. Morgan Kaufmann, San Mateo (1989)

    Google Scholar 

  11. Gathercole, S.E.: The development of memory. J. Child Psychol. Psychiat. 39(1), 3–27 (1998). https://doi.org/10.1111/1469-7610.00301. www.onlinelibrary.wiley.com/doi/abs/10.1111/1469-7610.00301

  12. Goh, B.S.: New algorithms for unconstrained optimization problems. In: Proceedings of 1995 American Control Conference - ACC 1995, vol. 3, pp. 2071–2074 (1995). https://doi.org/10.1109/ACC.1995.531260

  13. Goh, B.: Approximate greatest descent methods for optimization with equality constraints. J. Optim. Theory Appl. 148, 505–527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goh, B.: Numerical method in optimization as a multi-stage decision control system. In: Latest Advances in Systems Science and Computational Intelligence, pp. 25–30 (2012)

    Google Scholar 

  15. Grum, M.: Managing human and artificial knowledge bearers - the creation of a symbiotic knowledge management approach. In: Proceedings of the Tenth BMSD, pp. 182–201 (2020). https://doi.org/10.1007/978-3-030-24854-3_7

  16. Grum, M.: NMDL repository (2020). www.github.com/MarcusGrum/CoNM/tree/main/meta-models/nmdl. www.github.com/MarcusGrum/CoNM/tree/main/meta-models/nmdl, version 1.0.0

  17. Grum, M.: Construction of a Concept of Neuronal Modeling. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-658-35999-7

  18. Grum, M.: Towards a concept of neuronal modeling (CoNM) (2021). www.youtu.be/Rasm-lfeZ68. www.youtu.be/Rasm-lfeZ68

  19. Grum, M., Gronau, N.: A visionary way to novel process optimizations. In: Shishkov, B. (ed.) BMSD 2017. LNBIP, vol. 309, pp. 1–24. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78428-1_1

    Chapter  Google Scholar 

  20. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  21. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bureau Stand. 49(6), 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  22. Isikdogan, L.F., Nayak, B.V., Wu, C., Moreira, J.P., Sushma, R., Michael, G.: Semifreddonets: partially frozen neural networks for efficient computer vision systems. CoRR abs/2006.06888 (2020). www.arxiv.org/abs/2006.06888

  23. Kumaran, D., Hassabis, D., McClelland, J.L.: What learning systems do intelligent agents need? complementary learning systems theory updated. Trends Cogn. Sci. 20(7), 512–534 (2016)

    Article  Google Scholar 

  24. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8_2

    Chapter  Google Scholar 

  25. Li, Z., Hoiem, D.: Learning without forgetting. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 614–629. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_37

    Chapter  Google Scholar 

  26. Lufi, D., Okasha, S., Cohen, A.: Test anxiety and its effect on the personality of students with learning disabilities. Learn. Disabil. Q. 27(3), 176–184 (2004). https://doi.org/10.2307/1593667

    Article  Google Scholar 

  27. Maltoni, D., Lomonaco, V.: Continuous learning in single-incremental-task scenarios. arXiv:1806.08568 (2018)

  28. Martens, J.: Deep learning via hessian-free optimization. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML 2010, Omnipress, Madison, WI, USA, pp. 735–742 (2010)

    Google Scholar 

  29. McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995)

    Article  Google Scholar 

  30. Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6(4), 525–533 (1993). https://doi.org/10.1016/S0893-6080(05)80056-5. www.sciencedirect.com/science/article/pii/S0893608005800565

  31. Nocedal, J., Wright, S.J.: Numerical Optimization, 2e edn. Springer, New York (2006). https://doi.org/10.1007/0-387-22742-3_18

    Book  MATH  Google Scholar 

  32. Oja, E.: Simplified neuron model as a principal component analyzer. J. Math. Biol. 15(3), 267–273 (1982). https://doi.org/10.1007/BF00275687

    Article  MathSciNet  MATH  Google Scholar 

  33. Parisi, G.I., Tani, J., Weber, C., Wermter, S.: Lifelong learning of humans actions with deep neural network self-organization. Neural Netw. 96, 137–149 (2017)

    Article  Google Scholar 

  34. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. CoRR abs/1802.07569 (2018). arxiv.org/abs/1802.07569

  35. Peffers, K., et al.: The design science research process: a model for producing and presenting information systems research. In: 1st International Conference on Design Science in Information System and Technology (DESRIST), vol. 24, no. 3, pp. 83–106 (2006)

    Google Scholar 

  36. Plaut, D.C., Nowlan, S.J., Hinton, G.E.: Experiments on learning backpropagation. Technical Report CMU-CS-86-126, Carnegie-Mellon University, Pittsburgh, PA, p. 1 (1986)

    Google Scholar 

  37. Qiao, J., Meng, X., Li, W., Wilamowski, B.: A novel modular rbf neural network based on a brain-like partition method. Neural Comput. Appl. 32 (2020). https://doi.org/10.1007/s00521-018-3763-z

  38. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-shelf: an astounding baseline for recognition. In: CVPR 2014, Columbus, OH, vol. 39, no. 1, pp. 806–813 (2014)

    Google Scholar 

  39. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, pp. 586–591 (1993). www.citeseer.ist.psu.edu/riedmiller93irect.html

  40. Ritter, H., Martinetz, T., Schulten, K.: Neuronale Netze: eine Einführung in die Neuroinformatik selbstorganisierender Netzwerke. Reihe künstliche Intelligenz, Addison-Wesley (1991). www.books.google.de/books?id=MfsARQAACAAJ

  41. Robinson, A.J., Fallside, F.: The utility driven dynamic error propagation network. Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Department, p. 1 (1987)

    Google Scholar 

  42. Rojas, R.: Neural Networks - A Systematic Introduction. Springer, Berlin (1996). www.inf.fu-berlin.de/inst/ag-ki/rojas_home/pmwiki/pmwiki.php?n=Books.NeuralNetworksBook

  43. Rolls, E., Deco, G.: Computational Neuroscience of Vision. OUP Oxford (2001). www.books.google.de/books?id=SbFpuQAACAAJ

  44. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations. MIT Press (1986)

    Google Scholar 

  45. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  46. Rusu, A.A., et al.: Progressive neural networks. arXiv:1606.04671 (2016)

  47. Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2(6), 459–473 (1989). https://doi.org/10.1016/0893-6080(89)90044-0. www.sciencedirect.com/science/article/pii/0893608089900440

  48. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical Report, Carnegie Mellon university, Pittsburgh, PA, USA, p. 1 (1994)

    Google Scholar 

  49. Sohl-Dickstein, J., Poole, B., Ganguli, S.: An adaptive low dimensional quasi-newton sum of functions optimizer. CoRR abs/1311.2115 (2013). arxiv.org/abs/1311.2115

  50. Soltoggio, A.: Short-term plasticity as cause-effect hypothesis testing is distal reward learning. Biol. Cybern. 109, 75–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Sweller, J., van Merrienboer, J.J.G., Paas, F.G.W.C.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3), 251–296 (1998). https://doi.org/10.1023/A:1022193728205

    Article  Google Scholar 

  52. Tan, H.H., Lim, K.H.: Review of second-order optimization techniques in artificial neural networks backpropagation. IOP Conf. Ser. Mater. Sci. Eng. 495(1), 012003 (2019). https://doi.org/10.1088/1757-899X/495/1/012003

  53. van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. CoRR abs/1904.07734 (2019). arxiv.org/abs/1904.07734

  54. Wang, Y., Sun, D., Chen, K., Lai, F., Chowdhury, M.: Efficient DNN training with knowledge-guided layer freezing. CoRR abs/2201.06227 (2022). arxiv.org/abs/2201.06227

  55. Wilamowski, B.M., Yu, H.: Improved computation for Levenberg-Marquardt training. IEEE Trans. Neural Netw. 21(6), 930–937 (2010). https://doi.org/10.1109/TNN.2010.2045657

    Article  Google Scholar 

  56. Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent networks and their computational complexity. In: Chauvin, Y., Rumelhart, D.E. (eds.) Back-Propagation: Theory, Architectures and Applications, pp. 433–486. Lawrence Erlbaum Publishers, Hillsdale (1995). www.citeseer.nj.nec.com/williams95gradientbased.html

  57. Xiao, T., Zhang, J., Yang, K., Peng, Y., Zhang, Z.: Error-driven incremental learning in deep convolutional neural network for large-scale image classification. In: Proceedings of the ACM International Conference on Multimedia, Orlando, FL, pp. 177–186 (2014)

    Google Scholar 

  58. Yoon, J., Yang, E., Lee, J. Hwang, S.J.: Lifelong learning with dynamically expandable networks. In: ICLR 2018, Vancouver, Canada (2018)

    Google Scholar 

  59. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: ICML 2017, Sydney, Australia (2017)

    Google Scholar 

  60. Zhou, G., Sohn, K., Lee, H.: Online incremental feature learning with denoising autoen- coders. In: International Conference on Artificial Intelligence and Statistics, pp. 1453–1461 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Grum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grum, M. (2023). Learning Representations by Crystallized Back-Propagating Errors. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14125. Springer, Cham. https://doi.org/10.1007/978-3-031-42505-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42505-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42504-2

  • Online ISBN: 978-3-031-42505-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics