Skip to main content

Improved Barnacles Movement Optimizer (IBMO) Algorithm for Engineering Design Problems

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Abstract

A better understanding of natural behavior modeling in mathematical systems has enabled a new class of stochastic optimization algorithms that can estimate optimal solutions using reasonable computational resources for problems where exact algorithms show poor performance. The position up-dating mechanism in various optimization algorithms utilizes similar chaotic random behavior which impedes the performance of the search for a globally optimum solution in monotonic nonlinear search space. In this work, an approach is proposed that tackles these issues on an already established algorithm; Improved Barnacle Mating Optimization (IBMO) Algorithm, inspired by the movement and mating of Gooseneck Barnacles. The algorithm introduces the mimicry of the movement and mating behavior in nature to model an optimization process. Several benchmark functions are employed to gauge the performance of the proposed optimization technique. Results are compared with several meta-heuristics and conventional optimization algorithms. It is observed that the IBMO algorithm performs generally better and provides a huge potential for solving real-world problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abualigah, L.: Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications. Neural Comput. Appl. 33(7), 2949–2972 (2021)

    Article  Google Scholar 

  2. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, B.K., et al.: The evolutionary diversity of barnacles, with an updated classification of fossil and living forms. Zool. J. Linn. Soc. 193(3), 789–846 (2021)

    Article  Google Scholar 

  4. Dong, Y., Hou, J., Zhang, N., Zhang, M.: Research on how human intelligence, consciousness, and cognitive computing affect the development of artificial intelligence. Complexity 2020, 1–10 (2020)

    Google Scholar 

  5. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 227–263. Springer, Boston (2019). https://doi.org/10.1007/978-1-4419-1665-5_8

  6. Igel, C.: No free lunch theorems: limitations and perspectives of metaheuristics. In: Borenstein, Y., Moraglio, A. (eds.) Theory and Principled Methods for the Design of Metaheuristics. NCS, pp. 1–23. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-33206-7_1

    Chapter  MATH  Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  8. Mafarja, M., Mirjalili, S.: Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. 62, 441–453 (2018)

    Article  Google Scholar 

  9. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 1053–1073 (2016)

    Article  Google Scholar 

  10. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  11. Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H., Aljarah, I.: Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48, 805–820 (2018)

    Article  Google Scholar 

  12. Oestreicher, C.: A History of Chaos Theory. Dialogues in Clinical Neuroscience (2022)

    Google Scholar 

  13. Stark, A.E.: The Hardy-Weinberg principle. Genet. Mol. Biol. 28, 485–485 (2005)

    Article  Google Scholar 

  14. Sulaiman, M.H., Mustaffa, Z., Saari, M.M., Daniyal, H.: Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103330 (2020)

    Article  Google Scholar 

  15. Wang, C., Koh, J.M., Yu, T., Xie, N.G., Cheong, K.H.: Material and shape optimization of bi-directional functionally graded plates by giga and an improved multi-objective particle swarm optimization algorithm. Comput. Methods Appl. Mech. Eng. 366, 113017 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xing, B., Gao, W.-J.: Fruit fly optimization algorithm. In: Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. ISRL, vol. 62, pp. 167–170. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03404-1_11

    Chapter  MATH  Google Scholar 

  17. Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    Article  MathSciNet  Google Scholar 

  18. Yue, C., et al.: Problem definitions and evaluation criteria for the CEC 2020 special session and competition on single objective bound constrained numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China, Technical report 201911 (2019)

    Google Scholar 

  19. Zhang, J., Xiao, M., Gao, L., Pan, Q.: Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems. Appl. Math. Model. 63, 464–490 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by Top Research Centre Mechatronics (TRCM), University of Agder (UiA), Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Sanfilippo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raza Moosavi, S.K., Zafar, M.H., Mirjalili, S., Sanfilippo, F. (2023). Improved Barnacles Movement Optimizer (IBMO) Algorithm for Engineering Design Problems. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14125. Springer, Cham. https://doi.org/10.1007/978-3-031-42505-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42505-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42504-2

  • Online ISBN: 978-3-031-42505-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics