Skip to main content

European Practice for CDI Treatment

  • Chapter
  • First Online:
Updates on Clostridioides difficile in Europe

Abstract

Clostridioides difficile infection (CDI) remains a significant cause of morbidity and mortality worldwide. Historically, two antibiotics (metronidazole and vancomycin) and a recent third (fidaxomicin) have been used for CDI treatment; convincing data are now available showing that metronidazole is the least efficacious agent. The European Society of Clinical Microbiology and Infectious Diseases (ESCMID) management guidance for CDI were updated in 2021. This guidance document outlines the treatment options for a variety of CDI clinical scenarios and for non-antimicrobial management (e.g., faecal microbiota transplantation, FMT). One of the main changes is that metronidazole is no longer recommended as first-line CDI treatment. Rather, fidaxomicin is preferred on the basis of reduced recurrence rates with vancomycin as an acceptable alternative. Recommended options for recurrent CDI now include bezlotoxumab as well as FMT.

A 2017 survey of 20 European countries highlighted variation internationally in CDI management strategies. A variety of restrictions were in place in 65% countries prior to use of new anti-CDI treatments, including committee/infection specialist approval or economic review/restrictions. This survey was repeated in November 2022 to assess the current landscape of CDI management practices in Europe. Of 64 respondents from 17 countries, national CDI guidelines existed in 14 countries, and 11 have already/plan to incorporate the ESCMID 2021 CDI guidance, though implementation has not been surveyed in 6. Vancomycin is the most commonly used first-line agent for the treatment of CDI (n = 42, 66%), followed by fidaxomicin (n = 30, 47%). Six (9%) respondents use metronidazole as first-line agent for CDI treatment, whereas 22 (34%) only in selected low-risk patient groups. Fidaxomicin is more likely to be used in high-risk patient groups. Availability of anti-CDI therapy influenced prescribing in six respondents (9%). Approval pre-prescription was required before vancomycin (n = 3, 5%), fidaxomicin (n = 10, 6%), bezlotoxumab (n = 11, 17%) and FMT (n = 10, 6%). Implementation of CDI guidelines is rarely audited.

Novel anti-CDI agents are being evaluated; it is not yet clear what will be the roles of these agents. The treatment of recurrent CDI is particularly troublesome, and several different live biotherapeutics are being developed, in addition to FMT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A randomized, double-blind, active controlled study to evaluate the safety and tolerability of ridinilazole compared with vancomycin and to assess the pharmacokinetics of ridinilazole in adolescent subjects (aged 12 to <18 years) with Clostridioides ClinicalTrials.gov identifier: NCT04802837. Updated October 13, 2022. https://ClinicalTrials.gov/show/NCT04802837. Accessed 22 Mar 2023

  • A phase 3, placebo-controlled, randomized, observer-blinded study to evaluate the efficacy, safety, and tolerability of a Clostridium difficile vaccine in adults 50 years of age and older. ClinicalTrials.gov identifier: NCT03090191. Updated February 13, 2023. https://ClinicalTrials.gov/show/NCT03090191. Accessed 16 Mar 2023

  • ActelionLtd (2017) Actelion provides an update on the Phase III IMPACT program with cadazolid in CDAD

    Google Scholar 

  • Alang N, Kelly CR (2015) Weight gain after fecal microbiota transplantation. Open Forum Infect Dis 2(1):ofv004. https://doi.org/10.1093/ofid/ofv004

    Article  PubMed  PubMed Central  Google Scholar 

  • Baines SD, Crowther GS, Freeman J, Todhunter S, Vickers R, Wilcox MH (2015) SMT19969 as a treatment for Clostridium difficile infection: an assessment of antimicrobial activity using conventional susceptibility testing and an in vitro gut model. J Antimicrob Chemother 70(1):182–189. https://doi.org/10.1093/jac/dku324

    Article  CAS  PubMed  Google Scholar 

  • Baldoni D, Gutierrez M, Timmer W, Dingemanse J (2014) Cadazolid, a novel antibiotic with potent activity against Clostridium difficile: safety, tolerability and pharmacokinetics in healthy subjects following single and multiple oral doses. J Antimicrob Chemother 69(3):706–714. https://doi.org/10.1093/jac/dkt401

    Article  CAS  PubMed  Google Scholar 

  • Bancke L, Su X (2021) Efficacy of investigational microbiota-based live biotherapeutic RBX2660 in individuals with recurrent Clostridioides difficile infection: data from five prospective clinical studies. Open Forum Infect Dis 8(Supplement_1):S100–1

    Article  Google Scholar 

  • Basseres E, Endres BT, Khaleduzzaman M, Miraftabi F, Alam MJ, Vickers RJ, Garey KW (2016) Impact on toxin production and cell morphology in Clostridium difficile by ridinilazole (SMT19969), a novel treatment for C. difficile infection. J Antimicrob Chemother 71(5):1245–1251. https://doi.org/10.1093/jac/dkv498

  • Baunwall SMD, Andreasen SE, Hansen MM, Kelsen J, Høyer KL, Rågård N, Eriksen LL, Støy S, Rubak T, Damsgaard EMS, Mikkelsen S, Erikstrup C, Dahlerup JF, Hvas CL (2022) Faecal microbiota transplantation for first or second Clostridioides difficile infection (EarlyFMT): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol Hepatol 7(12):1083–1091. https://doi.org/10.1016/S2468-1253(22)00276-X

    Article  PubMed  Google Scholar 

  • Biswas J, Patel A, Otter J, Van Kleef E, Goldenberg S (2015) Contamination of the hospital environment from potential Clostridium difficile excretors without active infection. Infect Control Hosp Epidemiol 36(8):975–977. https://doi.org/10.1017/ice.2015.79

    Article  PubMed  Google Scholar 

  • Blount K, Jones C, Shannon W, Carter S (2017) Changing the microbiome: patients with a successful outcome following microbiota-based RBX2660 treatment trend toward human microbiome project healthy subjects’ profile. Paper presented at the ASM Microbe, New Orleans, USA. Abstract 212

    Google Scholar 

  • Boekhoud IM, Sidorov I, Nooij S, Harmanus C, Bos-Sanders IMJG, Viprey V, Spittal W, Clark E, Davies K, Freeman J, Kuijper EJ, Smits WK, COMBACTE-CDI Consortium (2021) Haem is crucial for medium-dependent metronidazole resistance in clinical isolates of Clostridioides difficile. J Antimicrob Chemother 76(7):1731–1740. https://doi.org/10.1093/jac/dkab097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boix V, Fedorak RN, Mullane KM, Pesant Y, Stoutenburgh U, Jin M, Adedoyin A, Chesnel L, Guris D, Larson KB, Murata Y (2017) Primary outcomes from a Phase 3, randomized, double-blind, active-controlled trial of surotomycin in subjects with Clostridium difficile infection. Open Forum Infect Dis 4(1):ofw275. https://doi.org/10.1093/ofid/ofw275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cammarota G, Ianiro G, Tilg H, Rajilic-Stojanovic M, Kump P, Satokari R, Sokol H, Arkkila P, Pintus C, Hart A, Segal J, Aloi M, Masucci L, Molinaro A, Scaldaferri F, Gasbarrini G, Lopez-Sanroman A, Link A, de Groot P, de Vos WM, Hogenauer C, Malfertheiner P, Mattila E, Milosavljevic T, Nieuwdorp M, Sanguinetti M, Simren M, Gasbarrini A (2017) European consensus conference on faecal microbiota transplantation in clinical practice. Gut 66(4):569–580. https://doi.org/10.1136/gutjnl-2016-313017

    Article  PubMed  Google Scholar 

  • Cammarota G, Masucci L, Ianiro G, Bibbo S, Dinoi G, Costamagna G, Sanguinetti M, Gasbarrini A (2015) Randomised clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment Pharmacol Therapeut 41(9):835–843. https://doi.org/10.1111/apt.13144

    Article  CAS  Google Scholar 

  • Chang J, Kane A, McDermott L, Vickers R, Snydman D, Thorpe C (2016a) Ridinilazole preserves major components of the intestinal microbiota during treatment of Clostridium difficile infection. Paper presented at the ECCMID Amsterdam, Netherlands. Abstract LB-116

    Google Scholar 

  • Chang J, Kane A, Snydman D (2016b) Ridinilazole preserves major components of the intestinal microbiota during treatment of Clostridium difficile infection. Paper presented at the American Society for Microbiology, Boston, MA, 16–20 June 2016. Abstr LB-116

    Google Scholar 

  • Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB (2008) Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis 197(3):435–438. https://doi.org/10.1086/525047

    Article  PubMed  Google Scholar 

  • Chew KS, van Merrienboer J, Durning SJ (2016) A portable mnemonic to facilitate checking for cognitive errors. BMC Res Notes 9(1):445. https://doi.org/10.1186/s13104-016-2249-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Chilton CH, Crowther GS, Baines SD, Todhunter SL, Freeman J, Locher HH, Athanasiou A, Wilcox MH (2014b) In vitro activity of cadazolid against clinically relevant Clostridium difficile isolates and in an in vitro gut model of C. difficile infection. J Antimicrob Chemother 69(3):697–705. https://doi.org/10.1093/jac/dkt411

    Article  CAS  PubMed  Google Scholar 

  • Chilton CH, Crowther GS, Todhunter SL, Nicholson S, Freeman J, Chesnel L, Wilcox MH (2014a) Efficacy of surotomycin in an in vitro gut model of Clostridium difficile infection. The Journal of antimicrobial chemotherapy 69(9):2426–2433. https://doi.org/10.1093/jac/dku141

    Article  CAS  PubMed  Google Scholar 

  • Clancy CJ, Buehrle D, Vu M, Wagener MM, Nguyen MH (2021) Impact of Revised Infectious Diseases Society of America and Society for Healthcare Epidemiology of America Clinical Practice Guidelines on the Treatment of Clostridium difficile infections in the United States. Clin Infect Dis 72(11):1944–1949. https://doi.org/10.1093/cid/ciaa484

    Article  CAS  PubMed  Google Scholar 

  • Connelly S, Widmer G, Mukherjee J, Huynh K, Bristol JA, Hubert S, Sliman J, Tzipori S, Kaleko M (2015) Tu2054 SYN-004, a clinical stage oral beta-lactamase therapy, protects the intestinal microflora from antibiotic-mediated damage in humanized pigs. Gastroenterology 148(4):S-1195. https://doi.org/10.1016/S0016-5085(15)34082-8

    Article  Google Scholar 

  • Corbett D, Wise A, Birchall S, Warn P, Baines SD, Crowther G, Freeman J, Chilton CH, Vernon J, Wilcox MH, Vickers RJ (2015) In vitro susceptibility of Clostridium difficile to SMT19969 and comparators, as well as the killing kinetics and post-antibiotic effects of SMT19969 and comparators against C. difficile. J Antimicrob Chemother 70(6):1751–1756. https://doi.org/10.1093/jac/dkv006

  • Cornely OA, Crook DW, Esposito R, Poirier A, Somero MS, Weiss K, Sears P, Gorbach S (2012) Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis 12(4):281–289. https://doi.org/10.1016/s1473-3099(11)70374-7

    Article  CAS  PubMed  Google Scholar 

  • Crobach MJ, Planche T, Eckert C, Barbut F, Terveer EM, Dekkers OM, Wilcox MH, Kuijper EJ (2016) European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect Suppl 4:s63–s81. https://doi.org/10.1016/j.cmi.2016.03.010

    Article  Google Scholar 

  • Crook DW, Walker AS, Kean Y, Weiss K, Cornely OA, Miller MA, Esposito R, Louie TJ, Stoesser NE, Young BC, Angus BJ, Gorbach SL, Peto TE (2012) Fidaxomicin versus vancomycin for Clostridium difficile infection: meta-analysis of pivotal randomized controlled trials. Clin Infect Dis 55(Suppl 2):S93–S103. https://doi.org/10.1093/cid/cis499

  • Daley P, Louie T, Lutz JE, Khanna S, Stoutenburgh U, Jin M, Adedoyin A, Chesnel L, Guris D, Larson KB, Murata Y (2017) Surotomycin versus vancomycin in adults with Clostridium difficile infection: primary clinical outcomes from the second pivotal, randomized, double-blind, Phase 3 trial. J Antimicrob Chemother 72(12):3462–3470. https://doi.org/10.1093/jac/dkx299

    Article  CAS  PubMed  Google Scholar 

  • Davies KA, Longshaw CM, Davis GL, Bouza E, Barbut F, Barna Z, Delmee M, Fitzpatrick F, Ivanova K, Kuijper E, Macovei IS, Mentula S, Mastrantonio P, von Muller L, Oleastro M, Petinaki E, Pituch H, Noren T, Novakova E, Nyc O, Rupnik M, Schmid D, Wilcox MH (2014) Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis 14(12):1208–1219. https://doi.org/10.1016/s1473-3099(14)70991-0

    Article  PubMed  Google Scholar 

  • Davies K, Mawer D, Walker AS, Berry C, Planche T, Stanley P, Goldenberg S, Sandoe J, Wilcox MH (2020) An analysis of Clostridium difficile environmental contamination during and after treatment for C difficile infection. Open Forum Infect Dis 7(11):ofaa362. https://doi.org/10.1093/ofid/ofaa362

    Article  PubMed  PubMed Central  Google Scholar 

  • de Bruyn G, Gordon DL, Steiner T, Tambyah P, Cosgrove C, Martens M, Bassily E, Chan ES, Patel D, Chen J, Torre-Cisneros J, De Magalhães F, Francesconi C, Gesser R, Jeanfreau R, Launay O, Laot T, Morfin-Otero R, Oviedo-Orta E, Park YS, Piazza FM et al (2021) Safety, immunogenicity, and efficacy of a Clostridioides difficile toxoid vaccine candidate: a phase 3 multicentre, observer-blind, randomised, controlled trial. Lancet Infect Dis 21(2):252–262. https://doi.org/10.1016/S1473-3099(20)30331-5

    Article  PubMed  Google Scholar 

  • de Gunzburg J, Ghozlane A, Ducher A, Le Chatelier E, Duval X, Ruppé E, Armand-Lefevre L, Sablier-Gallis F, Burdet C, Alavoine L, Chachaty E, Augustin V, Varastet M, Levenez F, Kennedy S, Pons N, Mentré F, Andremont A (2018) Protection of the human gut microbiome from antibiotics. J Infect Dis 217(4):628–636. https://doi.org/10.1093/infdis/jix604

    Article  CAS  PubMed  Google Scholar 

  • De Leon LM, Watson JB, Kelly CR (2013) Transient flare of ulcerative colitis after fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin Gastroenterol Hepatol 11(8):1036–1038. https://doi.org/10.1016/j.cgh.2013.04.045

    Article  PubMed  Google Scholar 

  • Debast SB, Bauer MP, Kuijper EJ (2014) European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect 20(Suppl 2):1–26. https://doi.org/10.1111/1469-0691.12418

    Article  CAS  PubMed  Google Scholar 

  • Deshpande A, Hurless K, Cadnum JL, Chesnel L, Gao L, Chan L, Kundrapu S, Polinkovsky A, Donskey CJ (2016) Effect of surotomycin, a novel cyclic lipopeptide antibiotic, on intestinal colonization with vancomycin-resistant enterococci and Klebsiella pneumoniae in mice. Antimicrob Agents Chemother 60(6):3333–3339. https://doi.org/10.1128/aac.02904-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donald RG, Flint M, Kalyan N, Johnson E, Witko SE, Kotash C, Zhao P, Megati S, Yurgelonis I, Lee PK, Matsuka YV, Severina E, Deatly A, Sidhu M, Jansen KU, Minton NP, Anderson AS (2013) A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile. Microbiology (Reading, England) 159(Pt 7):1254–1266. https://doi.org/10.1099/mic.0.066712-0

    Article  CAS  PubMed  Google Scholar 

  • Dose-confirmation, immunogenicity and safety study of the Clostridium difficile vaccine candidate VLA84 in healthy adults aged 50 years and older. Phase II study. ClinicalTrials.gov identifier: NCT02316470. Updated June 8, 2017. https://clinicaltrials.gov/ct2/show/NCT02316470. Accessed 16 Mar 2023

  • Dubberke E, Lee C, Orenstein R, Khanna S, Hecht G, Fraiz J (2016) Efficacy and safety of RBX2660 for the prevention of recurrent clostridium difficile infection: results of the PUNCH CD 2 trial. Paper presented at the IDWeek 2016. Abstract 1341

    Google Scholar 

  • ECDC (2017) Clostridium difficile. https://ecdc.europa.eu/en/publications-data/directory-guidance-prevention-and-control/clostridium-difficile. Accessed 30 June 2017

  • European Centre for Disease Prevention and Control (2013) Healthcare-associated infections in acute care hospitals. https://www.ecdc.europa.eu/en/healthcare-associated-infections-acute-care-hospitals

  • European Medicines Agency (2022, June) Faecal Microbiota Transplantation EU-IN Horizon Scanning Report. Retrieved from https://www.ema.europa.eu/en/documents/report/faecal-microbiota-transplantation-eu-horizonscanning-report_en.pdf

  • Feuerstadt P, Louie TJ, Lashner B, Wang EEL, Diao L, Bryant JA, Sims M, Kraft CS, Cohen SH, Berenson CS, Korman LY, Ford CB, Litcofsky KD, Lombardo MJ, Wortman JR, Wu H, Auniņš JG, McChalicher CWJ, Winkler JA, McGovern BH et al (2022) SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. New Engl J Med 386(3):220–229. https://doi.org/10.1056/NEJMoa2106516

    Article  CAS  PubMed  Google Scholar 

  • Finn E, Andersson FL, Madin-Warburton M (2021) Burden of Clostridioides difficile infection (CDI) - a systematic review of the epidemiology of primary and recurrent CDI. BMC Infect Dis 21(1):456. https://doi.org/10.1186/s12879-021-06147-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick F (2008) Management of Clostridium difficile infection--medical or surgical? Surgeon 6(6):325–328. https://doi.org/10.1016/s1479-666x(08)80002-9

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick F, Safdar N, van Prehn J, Tschudin-Sutter S (2022) How can patients with Clostridioides difficile infection on concomitant antibiotic treatment be best managed? Lancet Infect Dis 22(11):336–340. https://doi.org/10.1016/S1473-3099(22)00274-2

    Article  Google Scholar 

  • Fitzpatrick F, Skally M, Brady M, Burns K, Rooney C, Wilcox MH (2018) European practice for CDI treatment. Adv Exp Med Biol 1050:117–135. https://doi.org/10.1007/978-3-319-72799-8_8

    Article  PubMed  Google Scholar 

  • Foglia G, Shah S, Luxemburger C, Pietrobon PJ (2012) Clostridium difficile: development of a novel candidate vaccine. Vaccine 30(29):4307–4309. https://doi.org/10.1016/j.vaccine.2012.01.056

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2016) Early clinical trials with live biotherapeutic products: chemistry, manufacturing, and control information. https://www.apa.org/news/press/releases/2020/11/anxiety-depression-treatment Accessed 16 Mar 2022

  • Freeman J, Vernon J, Morris K, Nicholson S, Todhunter S, Longshaw C, Wilcox MH, Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group (2015b) Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect 21(3):248.e9–248.e16. https://doi.org/10.1016/j.cmi.2014.09.017

    Article  CAS  PubMed  Google Scholar 

  • Freeman J, Vernon J, Vickers R, Wilcox MH (2015a) Susceptibility of Clostridium difficile isolates of varying antimicrobial resistance phenotypes to SMT19969 and 11 comparators. Antimicrob Agents Chemother 60(1):689–692. https://doi.org/10.1128/aac.02000-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Garey KW, McPherson J, Dinh AQ, Hu C, Jo J, Wang W, Lancaster CK, Gonzales-Luna AJ, Loveall C, Begum K, Jahangir Alam M, Silverman MH, Hanson BM (2022) Efficacy, safety, pharmacokinetics, and microbiome changes of ibezapolstat in adults with Clostridioides difficile infection: a phase 2a multicenter clinical trial. Clin Infect Dis 75(7):1164–1170. https://doi.org/10.1093/cid/ciac096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehin M, Desnica B, Dingemanse J (2015) Minimal systemic and high faecal exposure to cadazolid in patients with severe Clostridium difficile infection. Int J Antimicrob Agents 46(5):576–581. https://doi.org/10.1016/j.ijantimicag.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  • Gerding DN, Kelly CP, Rahav G, Lee C, Dubberke ER, Kumar PN, Yacyshyn B, Kao D, Eves K, Ellison MC, Hanson ME, Guris D, Dorr MB (2018) Bezlotoxumab for prevention of recurrent Clostridium difficile infection in patients at increased risk for recurrence. Clin Infect Dis 67(5):649–656. https://doi.org/10.1093/cid/ciy171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerding DN, Meyer T, Lee C, Cohen SH, Murthy UK, Poirier A, Van Schooneveld TC, Pardi DS, Ramos A, Barron MA, Chen H, Villano S (2015) Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C. difficile infection: a randomized clinical trial. JAMA 313(17):1719–1727. https://doi.org/10.1001/jama.2015.3725

  • Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ, GRADE Working Group (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336(7650):924–926. https://doi.org/10.1136/bmj.39489.470347.AD

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldenberg SD, Brown S, Edwards L, Gnanarajah D, Howard P, Jenkins D, Nayar D, Pasztor M, Oliver S, Planche T, Sandoe JA, Wade P, Whitney L (2016) The impact of the introduction of fidaxomicin on the management of Clostridium difficile infection in seven NHS secondary care hospitals in England: a series of local service evaluations. Eur J Clin Microbiol Infect Dis 35(2):251–259. https://doi.org/10.1007/s10096-015-2538-z

    Article  CAS  PubMed  Google Scholar 

  • Goldstein EJ, Citron DM, Tyrrell KL, Merriam CV (2013) Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates. Antimicrob Agents Chemother 57(10):4872–4876. https://doi.org/10.1128/aac.01136-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales-Luna AJ, Carlson TJ, Garey KW (2023) Emerging options for the prevention and management of Clostridioides difficile infection. Drugs 83(2):105–116. https://doi.org/10.1007/s40265-022-01832-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Hota SS, Sales V, Tomlinson G, Salpeter MJ, McGeer A, Coburn B, Guttman DS, Low DE, Poutanen SM (2017) Oral vancomycin followed by fecal transplantation versus tapering oral vancomycin treatment for recurrent Clostridium difficile infection: an open-label, randomized controlled trial. Clin Infect Dis 64(3):265–271. https://doi.org/10.1093/cid/ciw731

    Article  PubMed  Google Scholar 

  • Hu MY, Katchar K, Kyne L, Maroo S, Tummala S, Dreisbach V, Xu H, Leffler DA, Kelly CP (2009) Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Gastroenterology 136(4):1206–1214. https://doi.org/10.1053/j.gastro.2008.12.038

    Article  PubMed  Google Scholar 

  • Johnson S, Gerding DN (2017) Fecal fixation: fecal microbiota transplantation for Clostridium difficile infection. Clin Infect Dis 64(3):272–274. https://doi.org/10.1093/cid/ciw735

    Article  PubMed  Google Scholar 

  • Johnson S, Lavergne V, Skinner AM, Gonzales-Luna AJ, Garey KW, Kelly CP, Wilcox MH (2021) Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 focused update guidelines on management of clostridioides difficile infection in adults. Clin Infect Dis 73(5):1029–1044. https://doi.org/10.1093/cid/ciab549

    Article  CAS  Google Scholar 

  • Johnson S, Louie TJ, Gerding DN, Cornely OA, Chasan-Taber S, Fitts D, Gelone SP, Broom C, Davidson DM (2014) Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis 59(3):345–354. https://doi.org/10.1093/cid/ciu313

    Article  CAS  PubMed  Google Scholar 

  • Kaleko M, Bristol JA, Hubert S, Parsley T, Widmer G, Tzipori S, Subramanian P, Hasan N, Koski P, Kokai-Kun J, Sliman J, Jones A, Connelly S (2016) Development of SYN-004, an oral beta-lactamase treatment to protect the gut microbiome from antibiotic-mediated damage and prevent Clostridium difficile infection. Anaerobe 41:58–67. https://doi.org/10.1016/j.anaerobe.2016.05.015

    Article  CAS  PubMed  Google Scholar 

  • Kampouri E, Croxatto A, Prod'hom G, Guery B (2021) Clostridioides difficile infection, still a long way to go. J Clin Med 10(3):389. https://doi.org/10.3390/jcm10030389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly CR, Fischer M, Allegretti JR, LaPlante K, Stewart DB, Limketkai BN, Stollman NH (2021) ACG clinical guidelines: prevention, diagnosis, and treatment of Clostridioides difficile infections. Am J Gastroenterol 116(6):1124–1147. https://doi.org/10.14309/ajg.0000000000001278

  • Khanna S, Assi M, Lee C, Yoho D, Louie T, Knapple W, Aguilar H, Garcia-Diaz J, Wang GP, Berry SM, Marion J, Su X, Braun T, Bancke L, Feuerstadt P (2022b) Efficacy and safety of RBX2660 in PUNCH CD3, a Phase III, randomized, double-blind, placebo-controlled trial with a bayesian primary analysis for the prevention of recurrent Clostridioides difficile infection. Drugs 82(15):1527–1538. https://doi.org/10.1007/s40265-022-01797-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna S, Assi M, Feuerstadt P, Harvey A, Bancke L (2022a) S132. An interim analysis of a phase 3, open-label study indicates efficacy and safety of RBX2660 in patients with recurrent Clostridioides difficile infection. Am J Gastroenterol 117(10S):e96. https://doi.org/10.14309/01.ajg.0000857168.31201.9f

  • Khanna S, Pardi DS, Kelly CR, Kraft CS, Dhere T, Henn MR, Lombardo MJ, Vulic M, Ohsumi T, Winkler J, Pindar C, McGovern BH, Pomerantz RJ, Aunins JG, Cook DN, Hohmann EL (2016) A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J Infect Dis 214(2):173–181. https://doi.org/10.1093/infdis/jiv766

    Article  PubMed  Google Scholar 

  • Kitchin N, Remich SA, Peterson J, Peng Y, Gruber WC, Jansen KU, Pride MW, Anderson AS, Knirsch C, Webber C (2020) A phase 2 study evaluating the safety, tolerability, and immunogenicity of two 3-dose regimens of a Clostridium difficile vaccine in healthy US adults aged 65 to 85 years. Clin Infect Dis 70(1):1–10. https://doi.org/10.1093/cid/ciz153

    Article  CAS  PubMed  Google Scholar 

  • Kokai-Kun JF, Roberts T, Coughlin O, Le C, Whalen H, Stevenson R, Wacher VJ, Sliman J (2019) Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: a double-blind, phase 2b, randomised placebo-controlled trial. Lancet Infect Dis 19(5):487–496. https://doi.org/10.1016/S1473-3099(18)30731-X

    Article  CAS  PubMed  Google Scholar 

  • Kokai-Kun JF, Le C, Trout K et al (2020) Ribaxamase, an orally administered beta-lactamase, diminishes changes to acquired antimicrobial resistance of the gut resistome in patients treated with ceftriaxone. Infect Drug Resist 13:2521–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotloff KL, Wasserman SS, Losonsky GA, Thomas W Jr, Nichols R, Edelman R, Bridwell M, Monath TP (2001) Safety and immunogenicity of increasing doses of a Clostridium difficile toxoid vaccine administered to healthy adults. Infect Immun 69(2):988–995. https://doi.org/10.1128/iai.69.2.988-995.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft C, Khanna S, Assi M, Feuerstadt P, Harvey A, Bancke L (2021) Sa611 interim analysis of a phase 3 open-label study indicates safety and efficacy of RBX2660, an investigational live biotherapeutic, in a “Real-world” population of patients with recurrent Clostridioides difficile infection. Gastroenterology 160(6):S-573

    Article  Google Scholar 

  • Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467(7316):711–713. https://doi.org/10.1038/nature09397

    Article  CAS  PubMed  Google Scholar 

  • Krutova M, de Meij TGJ, Fitzpatrick F, Drew RJ, Wilcox MH, Kuijper EJ (2022b) How to: Clostridioides difficile infection in children. Clin Microbiol Infect 28(8):1085–1090. https://doi.org/10.1016/j.cmi.2022.03.001

    Article  PubMed  Google Scholar 

  • Krutova M, Wilcox M, Kuijper E (2022a) Clostridioides difficile infection: are the three currently used antibiotic treatment options equal from pharmacological and microbiological points of view? Int J Infect Dis 124:118–123. https://doi.org/10.1016/j.ijid.2022.09.013

    Article  CAS  PubMed  Google Scholar 

  • Kyne L, Warny M, Qamar A, Kelly CP (2000) Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. New Engl J Med 342(6):390–397. 0.1056/nejm200002103420604

    Article  CAS  PubMed  Google Scholar 

  • Kyne L, Warny M, Qamar A, Kelly CP (2001) Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet (London, England) 357(9251):189–193. 0.1016/s0140-6736(00)03592-3

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Steiner T, Petrof EO, Smieja M, Roscoe D, Nematallah A, Weese JS, Collins S, Moayyedi P, Crowther M, Ropeleski MJ, Jayaratne P, Higgins D, Li Y, Rau NV, Kim PT (2016) Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. JAMA 315(2):142–149. https://doi.org/10.1001/jama.2015.18098

    Article  CAS  PubMed  Google Scholar 

  • Louie TJ, Emery J, Krulicki W, Byrne B, Mah M (2009) OPT-80 eliminates Clostridium difficile and is sparing of bacteroides species during treatment of C. difficile infection. Antimicrob Agents Chemother 53(1):261–263. https://doi.org/10.1128/AAC.01443-07

    Article  CAS  PubMed  Google Scholar 

  • Moura I, Spigaglia P, Barbanti F, Mastrantonio P (2013) Analysis of metronidazole susceptibility in different Clostridium difficile PCR ribotypes. J Antimicrob Chemother 68(2):362–365. https://doi.org/10.1093/jac/dks420

    Article  CAS  PubMed  Google Scholar 

  • Muhammad A, Madhav D, Rawish F, Viveksandeep TC, Albert E, Mollie J, Prateek S, Surotomycin (A Novel Cyclic Lipopeptide) vs. (2019) Vancomycin for the treatment of Clostridioides difficile infection: a systematic review and meta-analysis. Curr Clin Pharmacol 14(3):166–174. https://doi.org/10.2174/1574884714666190328162637. PMID: 30924421

    Article  PubMed  Google Scholar 

  • Nelson RL, Suda KJ, Evans CT (2017) Antibiotic treatment for Clostridium difficile-associated diarrhoea in adults. Cochrane Database Syst Rev 3:Cd004610. https://doi.org/10.1002/14651858.CD004610.pub5

    Article  PubMed  Google Scholar 

  • Orenstein R, Dubberke E, Hardi R, Ray A, Mullane K, Pardi DS, Ramesh MS (2016) Safety and durability of RBX2660 (microbiota suspension) for recurrent Clostridium difficile infection: results of the PUNCH CD study. Clin Infect Dis 62(5):596–602. https://doi.org/10.1093/cid/civ938

    Article  PubMed  Google Scholar 

  • Okhuysen PC, Ramesh M, Garey KW, Louie TJ, Torre Cisneros J, Stychneuskaya A, Kiknadze N, Li J, Duperchy E, Wilcox MH, Montoya JG, Styles L, Clow F, James D, Dubberke ER, De Oliveira CM, Van Steenkiste C (2022) A phase 3, randomized, double-blind study to evaluate the efficacy and safety of ridinilazole compared with vancomycin for the treatment of clostridioides difficile infection. Open Forum Infect Dis 9(Suppl 2):ofac492.021. https://doi.org/10.1093/ofid/ofac492.021

    Article  Google Scholar 

  • Pechine S, Gleizes A, Janoir C, Gorges-Kergot R, Barc MC, Delmee M, Collignon A (2005) Immunological properties of surface proteins of Clostridium difficile. J Med Microbiol 54(Pt 2):193–196. https://doi.org/10.1099/jmm.0.45800-0

    Article  CAS  PubMed  Google Scholar 

  • Pfizer (2022) Phase 3 CLOVER trial for Pfizer’s investigational clostridioides difficile vaccine indicates strong potential effect in reducing duration and severity of disease based on secondary endpoints [Press release]. 01 Mar 2022. https://www.pfizer.com/news/press-release/press-release-detail/phase-3-clover-trial-pfizers-investigational-clostridioides

  • Prior AR, Kevans D, McDowell L, Cudmore S, Fitzpatrick F (2017) Treatment of Clostridium difficile infection: a national survey of clinician recommendations and the use of faecal microbiota transplantation. J Hosp Infect 95(4):438–441. https://doi.org/10.1016/j.jhin.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  • Public Health England (2013) Updated guidance on the management and treatment of Clostridium difficile infection

    Google Scholar 

  • Qian X, Yanagi K, Kane AV, Alden N, Lei M, Snydman DR, Vickers RJ, Lee K, Thorpe CM (2020) Ridinilazole, a narrow spectrum antibiotic for treatment of Clostridioides difficile infection, enhances preservation of microbiota-dependent bile acids. Am J Physiol Gastrointest Liver Physiol 319(2):G227–G237. https://doi.org/10.1152/ajpgi.00046.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quera R, Espinoza R, Estay C, Rivera D (2014) Bacteremia as an adverse event of fecal microbiota transplantation in a patient with Crohn’s disease and recurrent Clostridium difficile infection. J Crohn’s Colitis 8(3):252–253. https://doi.org/10.1016/j.crohns.2013.10.002

    Article  Google Scholar 

  • Ray A, Jones C, Shannon W, Carter S (2017) Resetting the microbial landscape: donor microbiome engraftment in patients treated with RBX2660 for multi-recurrent Clostridium difficile infection. Paper presented at the ASM Microbe, New Orleans, USA, Abstract 262

    Google Scholar 

  • Rebiotix Inc (2017) Rebiotix reports positive top line data from open-label phase 2 trial of RBX2660 in recurrent Clostridium difficile

    Google Scholar 

  • Reigadas E, van Prehn J, Falcone M, Fitzpatrick F, MJGT V, Kuijper EJ, Bouza E, European Society of Clinical Microbiology and Infectious Diseases Study Group on Clostridioides difficile (ESGCD) and Study Group for Host and Microbiota interaction (ESGHAMI) (2021) How to: prophylactic interventions for prevention of Clostridioides difficile infection. Clin Microbiol Infect 27(12):1777–1783. https://doi.org/10.1016/j.cmi.2021.06.037

    Article  PubMed  Google Scholar 

  • Roberts T, Kokai-Kun JF, Coughlin O, Lopez BV, Whalen H, Bristol JA, Hubert S, Longstreth J, Lasseter K, Sliman J (2016) Tolerability and pharmacokinetics of SYN-004, an orally administered beta-lactamase for the prevention of Clostridium difficile-associated disease and antibiotic-associated diarrhea, in two phase 1 studies. Clini Drug Investig 36(9):725–734. https://doi.org/10.1007/s40261-016-0420-0

    Article  CAS  Google Scholar 

  • Safety and Immunogenicity Study of GSK’s Clostridium Difficile Vaccine 2904545A When Administered in Healthy Adults Aged 18-45 Years and 50-70 Years. ClinicalTrials.gov identifier: NCT04026009. Updated June 10, 2022. https://ClinicalTrials.gov/show/NCT04026009. Accessed 21 Sept 2022

  • Sattar A, Thommes P, Payne L, Warn P, Vickers RJ (2015) SMT19969 for Clostridium difficile infection (CDI): in vivo efficacy compared with fidaxomicin and vancomycin in the hamster model of CDI. J Antimicrob Chemother 70(6):1757–1762. https://doi.org/10.1093/jac/dkv005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheldon E, Kitchin N, Peng Y, Eiden J, Gruber W, Johnson E, Jansen KU, Pride MW, Pedneault L (2016) A phase 1, placebo-controlled, randomized study of the safety, tolerability, and immunogenicity of a Clostridium difficile vaccine administered with or without aluminum hydroxide in healthy adults. Vaccine 34(18):2082–2091. https://doi.org/10.1016/j.vaccine.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  • Sims MD, Khanna S, Feuerstadt P et al (2023) Safety and tolerability of SER-109 as an investigational microbiome therapeutic in adults with recurrent Clostridioides difficile infection: a phase 3, open-label, single-arm trial. JAMA Netw Open 6(2):e2255758. https://doi.org/10.1001/jamanetworkopen.2022.55758

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon K, Martin AJ, O'Donoghue C, Chen X, Fenelon L, Fanning S, Kelly CP, Kyne L (2013) Mortality in patients with Clostridium difficile infection correlates with host pro-inflammatory and humoral immune responses. J Med Microbiol 62(Pt 9):1453–1460. https://doi.org/10.1099/jmm.0.058479-0

    Article  CAS  PubMed  Google Scholar 

  • Stevens VW, Nelson RE, Schwab-Daugherty EM, Khader K, Jones MM, Brown KA, Greene T, Croft LD, Neuhauser M, Glassman P, Goetz MB, Samore MH, Rubin MA (2017) Comparative effectiveness of vancomycin and metronidazole for the prevention of recurrence and death in patients with Clostridium difficile infection. JAMA Intern Med 177(4):546–553. https://doi.org/10.1001/jamainternmed.2016.9045

    Article  PubMed  Google Scholar 

  • Synthetic Biologics I (2017) SYN-004 (Ribaxamase) receives breakthrough therapy designation from U.S. Food and Drug Administration for prevention of Clostridium difficile infection

    Google Scholar 

  • Tannock GW, Munro K, Taylor C, Lawley B, Young W, Byrne B, Emery J, Louie T (2010) A new macrocyclic antibiotic, fidaxomicin (OPT-80), causes less alteration to the bowel microbiota of Clostridium difficile-infected patients than does vancomycin. Microbiology 156(11):3354–3359. https://doi.org/10.1099/mic.0.042010-0

    Article  CAS  PubMed  Google Scholar 

  • Tariq R, Smyrk T, Pardi DS, Tremaine WJ, Khanna S (2016) New-onset microscopic colitis in an ulcerative colitis patient after fecal microbiota transplantation. Am J Gastroenterol 111(5):751–752. https://doi.org/10.1038/ajg.2016.67

    Article  PubMed  Google Scholar 

  • Trucksis M, Baird I, Cornely O, Golan Y, Hecht G, Pardi D, Pullman J, Polage C, Wilcox M, Bernardo P, Ford C, O’Brien E, Vetro R, Wortman J, Weston J, Henn M (2017) An analysis of results from the first placebo-controlled trial of single-dose SER-109, an investigational oral microbiome therapeutic to reduce the recurrence of Clostridium difficile infection (CDI). Paper presented at the ECCMID, Vienna, Austria. Abstract OS0250C

    Google Scholar 

  • Tschudin-Sutter S, Kuijper EJ, Durovic A, Vehreschild MJGT, Barbut F, Eckert C, Fitzpatrick F, Hell M, Norèn T, O’Driscoll J, Coia J, Gastmeier P, von Müller L, Wilcox MH, Widmer AF, Committee (2018) Guidance document for prevention of Clostridium difficile infection in acute healthcare settings. Clin Microbiol Infect 24(10):1051–1054. https://doi.org/10.1016/j.cmi.2018.02.020

    Article  CAS  PubMed  Google Scholar 

  • Turner NA, Warren BG, Gergen-Teague MF, Addison RM, Addison B, Rutala WA, Weber DJ, Sexton DJ, Anderson DJ (2022) Impact of oral metronidazole, vancomycin, and fidaxomicin on host shedding and environmental contamination with Clostridioides difficile. Clin Infect Dis 74(4):648–656. https://doi.org/10.1093/cid/ciab473

    Article  CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration (2022) FDA Approves First Fecal Microbiota Product. https://www.fda.gov/news-events/press-announcements/fda-approves-first-fecal-microbiota-product. Accessed 15 Jan 2023

  • Valneva S (2016) Valneva announces successful completion of phase II for Clostridium difficile vaccine candidate

    Google Scholar 

  • van Eijk E, Boekhoud IM, Kuijper EJ, Bos-Sanders IMJG, Wright G, Smits WK (2019) Genome location dictates the transcriptional response to PolC inhibition in Clostridium difficile. Antimicrob Agents Chemother 63(2):e01363–e01318. https://doi.org/10.1128/AAC.01363-18

    Article  PubMed  PubMed Central  Google Scholar 

  • van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. New Engl J Med 368(5):407–415. https://doi.org/10.1056/NEJMoa1205037

    Article  CAS  PubMed  Google Scholar 

  • van Prehn J, Fitzpatrick F, Kuijper EJ, European Study Group for Clostridioides difficile and the European Study Group for Host and Microbiota Interaction (2023) Faecal microbiota transplantation for first and second episodes of Clostridioides difficile infection. Lancet Gastroenterol Hepatol 8(2):109. https://doi.org/10.1016/S2468-1253(22)00342-9

    Article  PubMed  Google Scholar 

  • van Prehn J, Reigadas E, Vogelzang EH et al (2021) European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin Microbiol Infect 27(Suppl 2):s1–s21. https://doi.org/10.1016/j.cmi.2021.09.038

    Article  CAS  PubMed  Google Scholar 

  • van Rossen TM, Ooijevaar RE, Vandenbroucke-Grauls CMJE, Dekkers OM, Kuijper EJ, Keller JJ, van Prehn J (2021) Prognostic factors for severe and recurrent Clostridioides difficile infection: a systematic review. Clin Microbiol Infect 28(3):321–331. https://doi.org/10.1016/j.cmi.2021.09.026

    Article  PubMed  Google Scholar 

  • Vardakas KZ, Polyzos KA, Patouni K, Rafailidis PI, Samonis G, Falagas ME (2012) Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole: a systematic review of the evidence. Int J Antimicrob Agents 40(1):1–8. https://doi.org/10.1016/j.ijantimicag.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  • Vehreschild MJGT, Ducher A, Louie T, Cornely OA, Feger C, Dane A, Varastet M, Vitry F, de Gunzburg J, Andremont A, Mentré F, Wilcox MH (2022) An open randomized multicentre Phase 2 trial to assess the safety of DAV132 and its efficacy to protect gut microbiota diversity in hospitalized patients treated with fluoroquinolones. J Antimicrob Chemother 77(4):1155–1165. https://doi.org/10.1093/jac/dkab474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers R, Robinson N, Best E, Echols R, Tillotson G, Wilcox M (2015) A randomised phase 1 study to investigate safety, pharmacokinetics and impact on gut microbiota following single and multiple oral doses in healthy male subjects of SMT19969, a novel agent for Clostridium difficile infections. BMC Infect Dis 15:91. https://doi.org/10.1186/s12879-015-0759-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers RJ, Tillotson G, Goldstein EJ, Citron DM, Garey KW, Wilcox MH (2016) Ridinilazole: a novel therapy for Clostridium difficile infection. Int J Antimicrob Agents 48(2):137–143. https://doi.org/10.1016/j.ijantimicag.2016.04.026

    Article  CAS  PubMed  Google Scholar 

  • Vickers RJ, Tillotson GS, Nathan R, Hazan S, Pullman J, Lucasti C, Deck K, Yacyshyn B, Maliakkal B, Pesant Y, Tejura B, Roblin D, Gerding DN, Wilcox MH (2017) Efficacy and safety of ridinilazole compared with vancomycin for the treatment of Clostridium difficile infection: a phase 2, randomised, double-blind, active-controlled, non-inferiority study. Lancet Infect Dis 17(7):735–744. https://doi.org/10.1016/s1473-3099(17)30235-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhu D, Sun X (2022) Development of an effective nontoxigenic Clostridioides difficile-based oral vaccine against C. difficile infection. Microbiol Spectr 10(3):e0026322. https://doi.org/10.1128/spectrum.00263-22

    Article  CAS  PubMed  Google Scholar 

  • Weiss W, Pulse M, Vickers R (2014) In vivo assessment of SMT19969 in a hamster model of Clostridium difficile infection. Antimicrob Agents Chemother 58(10):5714–5718. https://doi.org/10.1128/aac.02903-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, Cornely OA, Rahav G, Bouza E, Lee C, Jenkin G, Jensen W, Kim YS, Yoshida J, Gabryelski L, Pedley A, Eves K, Tipping R, Guris D, Kartsonis N, Dorr MB (2017) Bezlotoxumab for prevention of recurrent Clostridium difficile infection. New Engl J Med 376(4):305–317. https://doi.org/10.1056/NEJMoa1602615

    Article  CAS  PubMed  Google Scholar 

  • Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL (2014) Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 312(17):1772–1778. https://doi.org/10.1001/jama.2014.13875

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank colleagues who took the time to complete the online survey of CDI treatment in Europe in November 2022.

Conflicts of Interest

FF has received research grant support and been a recipient of a consultancy fee from Tillots Pharma.

JvP has received research grant support by Merck Sharp & Dohme.

MW has received consulting fees from the following: AiCuris, Bayer, Crestone, Da Volterra, Deinove, EnteroBiotix, the European Tissue Symposium, Ferring, GSK, Menarini, Merck, Nestlé, Paion, Paratek, Pfizer, Phico Therapeutics, Qpex Biopharma, Seres, Surface Skins, Summit, Tillotts, Vaxxilon/Idorsia and Vedanta; Lecture fees from GSK, Merck, Pfizer, Seres & Tillotts; and Grant support from Almirall, Da Volterra, EnteroBiotix, GSK, Merck, MicroPharm, Nabriva, Paratek, Pfizer, Seres, Summit, the European Tissue Symposium and Tillotts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fidelma Fitzpatrick or Mark H. Wilcox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fitzpatrick, F. et al. (2024). European Practice for CDI Treatment. In: Mastrantonio, P., Rupnik, M. (eds) Updates on Clostridioides difficile in Europe. Advances in Experimental Medicine and Biology(), vol 1435. Springer, Cham. https://doi.org/10.1007/978-3-031-42108-2_4

Download citation

Publish with us

Policies and ethics