Skip to main content

Abstract

The mechanical properties of materials are fundamentally derived from the microscopic structures and their behavior, and nanoindentation testing is widely used in fundamental studies of microscopic plasticity in materials. However, it is difficult to capture the plastic deformation phenomena moment by moment in experiments. For this issue, molecular dynamics (MD) simulation is a useful tool for visualizing atomistic behavior in materials. To cultivate a better understanding the elementary process of microscopic plastic deformation, in this study, we conducted nanoindentation MD simulation for body-centered cubic (BCC) iron (Fe) and hexagonal close-packed (HCP) magnesium (Mg) and visualized the initiation of plastic deformation, that is, dislocation nucleation. Furthermore, displacement burst events, called “pop-in,” are observed in nanoindentation and well-known as catastrophic events which result from dislocation nucleation. Here, we also predicted the temperature dependency of first pop-in load based on nanoindentation MD simulation for HCP Mg. Compared to the prediction result for BCC Fe in our previous study, the temperature dependence for Mg is much smaller than that for Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gleiter, T.: Nanostructured materials: basic concepts and microstructure. Acta Mater. 48(1), 1–29 (2000)

    Article  CAS  Google Scholar 

  2. Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9(5), 32–40 (2006)

    Article  CAS  Google Scholar 

  3. Sutton, A.P., Pethica, J.B.: Inelastic flow processes in nanometre volumes of solids. J. Phys.: Condens. Matter 2(24), 5317–5326 (1990)

    Google Scholar 

  4. Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P., Wyrobek, J.T.: Indentation induced dislocation nucleation: the initial yield point. Acta Mater. 44(9), 697–702 (1996)

    Article  Google Scholar 

  5. Minor, A.M., et al.: A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5(9), 697–702 (2006)

    Article  CAS  Google Scholar 

  6. Gouldstone, A.V., Vliet, K.J., Suresh, S.: Simulation of defect nucleation in a crystal. Nature 411, 656 (2001)

    Article  CAS  Google Scholar 

  7. Van Vliet, K.J., Li, J., Zhu, T., Yip, S., Suresh, S.: Quantifying the early stages of plasticity through nanoscale experiments and simulations. Nature 67, 104105 (2003)

    Google Scholar 

  8. Ruestes, C.J., Alhafez, I.A., Urbassek, H.M.: Atomistic studies of nanoindentation-a review of recent advances. Crystals 7(10), 293 (2017)

    Article  Google Scholar 

  9. Ohmura, T., Wakeda, M.: Pop-In phenomenon as a fundamental plasticity probed by nanoindentation technique. Materials 14(8), 1879 (2021)

    Article  CAS  Google Scholar 

  10. Sato, Y., Shinzato, S., Ohmura, T., Hatano, T., Ogata, S.: Unique universal scaling in nanoindentation pop-ins. Nat. Commun. 11, 4177 (2020)

    Article  Google Scholar 

  11. Schuh, C.A., Lund, A.C.: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19(7), 2152–2158 (2004). https://doi.org/10.1557/JMR.2004.0276

    Article  CAS  Google Scholar 

  12. Schuh, C.A., Mason, J.K., Lund, A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4(8), 617–621 (2005)

    Article  CAS  Google Scholar 

  13. Mason, J.K., Lund, A.C., Schuh, C.A.: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73(5), 054102 (2006)

    Article  Google Scholar 

  14. Sato, Y., Shinzato, S., Ohmura, T., Ogata, S.: Atomistic prediction of the temperature- and loading-rate-dependent first pop-in load in nanoindentation. Int. J. Plast 121, 280–292 (2019)

    Article  Google Scholar 

  15. Aghion, E., Bronfin, B., Eliezer, D.: The role of the magnesium industry in protecting the environment. J. Mater. Process. Technol. 117(3), 381–385 (2001)

    Article  CAS  Google Scholar 

  16. Hirel, P.: Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015)

    Article  CAS  Google Scholar 

  17. Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Phil. Mag. 83(35), 3977–3994 (2003)

    Article  CAS  Google Scholar 

  18. Wu, Z., Francis, M.F., Curtin, W.A.: Magnesium interatomic potential for simulating plasticity and fracture phenomena. Mater. Today 23(1), 015004 (2003)

    Google Scholar 

  19. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  CAS  Google Scholar 

  20. Henkelman, H., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978 (2000)

    Article  CAS  Google Scholar 

  21. Fan, Y., Osetsky, Y.N., Yip, S., Yildiz, B.: Onset mechanism of strain-rate-induced flow stress upturn. Phys. Rev. Lett. 109(13), 133503 (2012)

    Article  Google Scholar 

  22. Linstrom, P.J., Mallard, W.G.: NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (2003). http://webbook.nist.gov. Retrieved 1 Nov 2004

  23. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010)

    Article  Google Scholar 

  24. Akhtar, A., Teghtsoonian, E.: Solid solution strengthening of magnesium single crystals-I alloying behaviour in basal slip. Acta Metall. 17(11), 1339–1349 (1969)

    Article  CAS  Google Scholar 

  25. Chapuis, A., Driver, J.H.: Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals. Acta Mater. 59(5), 1986–1994 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Y. S. acknowledges the financial support from the AMADA Foundation (AF-2021038-C2). Y. S. and J. Y. would like to thank Mr. Tomohiro Uchida for helping the execution of the simulations. Simulations in this work were performed on Wisteria/BDEC-01 at the Information Technology Center, The University of Tokyo and OCTOPUS at the Cybermedia Center, Osaka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sato, Y., Shinzato, S., Ohmura, T., Hatano, T., Yanagimoto, J., Ogata, S. (2024). Molecular Dynamics Simulation on the Initiation of Plastic Deformation by Nanoindentation. In: Mocellin, K., Bouchard, PO., Bigot, R., Balan, T. (eds) Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity. ICTP 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-42093-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42093-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42092-4

  • Online ISBN: 978-3-031-42093-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics