Skip to main content

Multi-Omics Approaches to Discovering Acute Stroke Injury and Recovery Mechanisms

  • Chapter
  • First Online:
Stroke Genetics

Abstract

Millions of people suffer an acute stroke each year, resulting in an enormous global burden of residual disability and mortality. Despite decades of work to discover effective therapeutics to prevent the consequences of ischemic injury and promote recovery, there have been hundreds of failed clinical trials. Genetics and other omics offer the opportunity to apply ‘reverse translational’ approaches to discover mechanisms important to mitigating injury and promoting recovery. In this chapter, we present a rationale and outline methodology for this broad investigative approach, including the development of creative endophenotypes and integration of multi-omic bioinformatics, as means of enhancing the discovery pathway. We also discuss the urgent need to expand collaborations and harness emerging technologies such as artificial intelligence to phenotype large enough cohorts to have adequate power to find genes and pathways relevant to stroke outcomes. Finally, we discuss challenges and future directions in this rapidly expanding area of stroke research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, Fisher M, Pandian J, Lindsay P. World stroke organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17:18–29.

    Article  PubMed  Google Scholar 

  2. GBD. Stroke collaborators (2021) global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet Neurol. 2019;20:795–820.

    Google Scholar 

  3. van Horn N, Kniep H, Leischner H, et al. Predictors of poor clinical outcome despite complete reperfusion in acute ischemic stroke patients. J Neurointerv Surg. 2021;13:14–8.

    Article  PubMed  Google Scholar 

  4. Lee JM, Zipfel GJ, Choi DW. The changing landscape of ischaemic brain injury mechanisms. Nature. 1999;399:A7–14.

    Article  CAS  PubMed  Google Scholar 

  5. Diringer MN, Zazulia AR. Osmotic therapy: fact and fiction. Neurocrit Care. 2004;1:219–33.

    Article  CAS  PubMed  Google Scholar 

  6. Yaghi S, Eisenberger A, Willey JZ. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: a review of natural history and treatment. JAMA Neurol. 2014;71:1181–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim HW, Shin JA, Kim H-J, Ahn J-H, Park E-M. Enhanced repair processes and iron uptake by ischemic preconditioning in the brain during the recovery phase after ischemic stroke. Brain Res. 2021;1750:147172.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Liesz A, Li P. Coming to the rescue: regulatory T cells for promoting recovery after ischemic stroke. Stroke. 2021;52:e837–41.

    Article  CAS  PubMed  Google Scholar 

  9. Dhir N, Medhi B, Prakash A, Goyal MK, Modi M, Mohindra S. Pre-clinical to clinical translational failures and current status of clinical trials in stroke therapy: a brief review. Curr Neuropharmacol. 2020;18:596–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59:467–77.

    Article  PubMed  Google Scholar 

  11. Kahle MP, Bix GJ. Successfully climbing the “STAIRs”: surmounting failed translation of experimental ischemic stroke treatments. Stroke Res Treat. 2012;2012:374098.

    PubMed  PubMed Central  Google Scholar 

  12. Lee J-M, Fernandez-Cadenas I, Lindgren AG. Using human genetics to understand mechanisms in ischemic stroke outcome: from early brain injury to long-term recovery. Stroke. 2021;52:3013–24.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lyden PD. Cerebroprotection for acute ischemic stroke: looking ahead. Stroke. 2021;52:3033–44.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kirsch E, Szejko N, Falcone GJ. Genetic underpinnings of cerebral edema in acute brain injury: an opportunity for pathway discovery. Neurosci Lett. 2020;730:135046.

    Article  CAS  PubMed  Google Scholar 

  15. Nelson MR, Tipney H, Painter JL, et al. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–60.

    Article  CAS  PubMed  Google Scholar 

  16. Dichgans M, Beaufort N, Debette S, Anderson CD. Stroke genetics: turning discoveries into clinical applications. Stroke. 2021;52:2974–82.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50:524–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ibanez L, Heitsch L, Dube U, et al. Overlap in the genetic architecture of stroke risk, early neurological changes, and cardiovascular risk factors. Stroke. 2019;50:1339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rost NS, Bottle A, Lee J-M, Randall M, Middleton S, Shaw L, Thijs V, Rinkel GJE, Hemmen TM, Global Comparators Stroke GOAL Collaborators. Stroke severity is a crucial predictor of outcome: an International prospective validation study. J Am Heart Assoc. 2016;5:e002433.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Heitsch L, Ibanez L, Carrera C, et al. Early neurological change after ischemic stroke is associated with 90-day outcome. Stroke. 2021;52:132–41.

    Article  PubMed  Google Scholar 

  21. Alexandrov AV, Demchuk AM, Felberg RA, Christou I, Barber PA, Burgin WS, Malkoff M, Wojner AW, Grotta JC. High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial doppler monitoring. Stroke. 2000;31:610–4.

    Article  CAS  PubMed  Google Scholar 

  22. Che F, Wang A, Ju Y, Ding Y, Duan H, Geng X, Zhao X, Wang Y. Early neurological deterioration in acute ischemic stroke patients after intravenous thrombolysis with alteplase predicts poor 3-month functional prognosis—data from the thrombolysis implementation and monitor of acute ischemic stroke in China (TIMS-China). BMC Neurol. 2022;22:212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim J-M, Bae J-H, Park K-Y, Lee WJ, Byun JS, Ahn S-W, Shin H-W, Han S-H, Yoo I-H. Incidence and mechanism of early neurological deterioration after endovascular thrombectomy. J Neurol. 2019;266:609–15.

    Article  PubMed  Google Scholar 

  24. Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, Jickling GC. Hemorrhagic transformation in ischemic stroke and the role of inflammation. Front Neurol. 2021;12:661955.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Broocks G, Faizy TD, Flottmann F, Schön G, Langner S, Fiehler J, Kemmling A, Gellissen S. Subacute infarct volume with edema correction in computed tomography is equivalent to final infarct volume after ischemic stroke: improving the comparability of infarct imaging endpoints in clinical trials. Investig Radiol. 2018;53:472–6.

    Article  Google Scholar 

  26. Devan WJ, Falcone GJ, Anderson CD, et al. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke. 2013;44:1578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zaitlen N, Paşaniuc B, Gur T, Ziv E, Halperin E. Leveraging genetic variability across populations for the identification of causal variants. Am J Hum Genet. 2010;86:23–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lancaster E, Burnor E, Zhang J, Lancaster E. ADAM23 is a negative regulator of Kv1.1/Kv1.4 potassium currents. Neurosci Lett. 2019;704:159–63.

    Article  CAS  PubMed  Google Scholar 

  29. Petit-Pedrol M, Sell J, Planagumà J, et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain. 2018;141:3144–59.

    PubMed  PubMed Central  Google Scholar 

  30. Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science. 2006;313:1792–5.

    Article  CAS  PubMed  Google Scholar 

  31. van Sonderen A, Petit-Pedrol M, Dalmau J, Titulaer MJ. The value of LGI1, Caspr2 and voltage-gated potassium channel antibodies in encephalitis. Nat Rev Neurol. 2017;13:290–301.

    Article  PubMed  Google Scholar 

  32. Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15:869–81.

    Article  CAS  PubMed  Google Scholar 

  33. Hill MD, Goyal M, Menon BK, et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. Lancet. 2020;395:878–87.

    Article  CAS  PubMed  Google Scholar 

  34. Ibanez L, Heitsch L, Carrera C, et al. Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke. Brain. 2022;145:2394–406.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Söderholm M, Pedersen A, Lorentzen E, et al. Genome-wide association meta-analysis of functional outcome after ischemic stroke. Neurology. 2019;92:e1271–83.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mola-Caminal M, Carrera C, Soriano-Tárraga C, et al. PATJ low frequency variants are associated with worse ischemic stroke functional outcome. Circ Res. 2019;124:114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marini S, Devan WJ, Radmanesh F, et al. 17p12 influences hematoma volume and outcome in spontaneous intracerebral hemorrhage. Stroke. 2018;49:1618–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Carrera C, Cárcel-Márquez J, Cullell N, et al. Single nucleotide variations in ZBTB46 are associated with post-thrombolytic parenchymal haematoma. Brain. 2021;144:2416–26.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muiño E, Cárcel-Márquez J, Carrera C, et al. RP11-362K2.2:RP11-767I20.1 genetic variation is associated with post-reperfusion therapy parenchymal hematoma. A GWAS meta-analysis. J Clin Med. 2021;10:3137.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pearson-Fuhrhop KM, Burke E, Cramer SC. The influence of genetic factors on brain plasticity and recovery after neural injury. Curr Opin Neurol. 2012;25:682–8.

    Article  PubMed  Google Scholar 

  41. Lindgren A, Maguire J. Stroke recovery genetics. Stroke. 2016;47:2427–34.

    Article  PubMed  Google Scholar 

  42. Pfeiffer D, Chen B, Schlicht K, et al. Genetic imbalance is associated with functional outcome after ischemic stroke. Stroke. 2019;50:298–304.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gaastra B, Alexander S, Bakker MK, et al. Genome-wide association study of clinical outcome after aneurysmal subarachnoid haemorrhage: protocol. Transl Stroke Res. 2022;13:565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Battey TWK, Karki M, Singhal AB, Wu O, Sadaghiani S, Campbell BCV, Davis SM, Donnan GA, Sheth KN, Kimberly WT. Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke. 2014;45:3643–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cruchaga C, Kauwe JSK, Harari O, et al. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron. 2013;78:256–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Piedade GS, Schirmer CM, Goren O, Zhang H, Aghajanian A, Faber JE, Griessenauer CJ. Cerebral collateral circulation: a review in the context of ischemic stroke and mechanical thrombectomy. World Neurosurg. 2019;122:33–42.

    Article  PubMed  Google Scholar 

  47. Seifert K, Heit JJ. Collateral blood flow and ischemic core growth. Transl Stroke Res. 2022;14:13–21. https://doi.org/10.1007/s12975-022-01051-2.

    Article  PubMed  Google Scholar 

  48. Wang C-M, Chang Y-M, Sung P-S, Chen C-H. Hypoperfusion index ratio as a surrogate of collateral scoring on CT angiogram in large vessel stroke. J Clin Med. 2021;10:1296.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guenego A, Marcellus DG, Martin BW, Christensen S, Albers GW, Lansberg MG, Marks MP, Wintermark M, Heit JJ. Hypoperfusion intensity ratio is correlated with patient eligibility for thrombectomy. Stroke. 2019;50:917–22.

    Article  PubMed  Google Scholar 

  50. Murray NM, Culbertson CJ, Wolman DN, Mlynash M, Lansberg MG. Hypoperfusion intensity ratio predicts malignant edema and functional outcome in large-vessel occlusive stroke with poor revascularization. Neurocrit Care. 2021;35:79–86.

    Article  CAS  PubMed  Google Scholar 

  51. van Horn N, Broocks G, Kabiri R, et al. Cerebral hypoperfusion intensity ratio is linked to progressive early edema formation. J Clin Med. 2022;11:2373.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lucitti JL, Sealock R, Buckley BK, Zhang H, Xiao L, Dudley AC, Faber JE. Variants of Rab GTPase-effector binding protein-2 cause variation in the collateral circulation and severity of stroke. Stroke. 2016;47:3022–31.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rebchuk AD, Field TS, Hill MD, et al. Determinants of leptomeningeal collateral status variability in ischemic stroke patients. Can J Neurol Sci. 2021;49:1–7.

    Google Scholar 

  54. Cipolla MJ. Therapeutic induction of collateral flow. Transl Stroke Res. 2022;14:53–65. https://doi.org/10.1007/s12975-022-01019-2.

    Article  PubMed  PubMed Central  Google Scholar 

  55. McKeown ME, Prasad A, Kobsa J, et al. Midline shift greater than 3 mm independently predicts outcome after ischemic stroke. Neurocrit Care. 2022;36:46–51.

    Article  PubMed  Google Scholar 

  56. Yoo AJ, Sheth KN, Kimberly WT, et al. Validating imaging biomarkers of cerebral edema in patients with severe ischemic stroke. J Stroke Cerebrovasc Dis. 2013;22:742–9.

    Article  PubMed  Google Scholar 

  57. Dhar R, Yuan K, Kulik T, Chen Y, Heitsch L, An H, Ford A, Lee J-M. CSF volumetric analysis for quantification of cerebral edema after hemispheric infarction. Neurocrit Care. 2016;24:420–7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dhar R, Chen Y, Hamzehloo A, Kumar A, Heitsch L, He J, Chen L, Slowik A, Strbian D, Lee J-M. Reduction in cerebrospinal fluid volume as an early quantitative biomarker of cerebral edema after ischemic stroke. Stroke. 2020;51:462–7.

    Article  PubMed  Google Scholar 

  59. Bui Q, Kumar A, Chen Y, Hamzehloo A, Heitsch L, Slowik A, Strbian D, Lee J-M, Dhar R. CSF-based volumetric imaging biomarkers highlight incidence and risk factors for cerebral edema after ischemic stroke. Neurocritical Care. https://doi.org/10.1007/s12028-023-01742-0.

  60. Dhar R, Hamzehloo A, Kumar A, Chen Y, He J, Heitsch L, Slowik A, Strbian D, Lee J-M. Hemispheric CSF volume ratio quantifies progression and severity of cerebral edema after acute hemispheric stroke. J Cereb Blood Flow Metab. 2021;41:2907–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Foroushani HM, Hamzehloo A, Kumar A, Chen Y, Heitsch L, Slowik A, Strbian D, Lee J-M, Marcus DS, Dhar R. Accelerating prediction of malignant cerebral edema after ischemic stroke with automated image analysis and explainable neural networks. Neurocrit Care. 2022;36:471–82.

    Article  PubMed  Google Scholar 

  62. Foroushani HM, Hamzehloo A, Kumar A, Chen Y, Heitsch L, Slowik A, Strbian D, Lee J-M, Marcus DS, Dhar R. Quantitative serial CT imaging-derived features improve prediction of malignant cerebral edema after ischemic stroke. Neurocrit Care. 2020;33:785–92.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Broocks G, Kemmling A, Aberle J, et al. Ischemic lesion water uptake in acute stroke: is blood glucose related to cause and effect? J Stroke. 2019;21:347–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Broocks G, Flottmann F, Hanning U, Schön G, Sporns P, Minnerup J, Fiehler J, Kemmling A. Impact of endovascular recanalization on quantitative lesion water uptake in ischemic anterior circulation strokes. J Cereb Blood Flow Metab. 2020;40:437–45.

    Article  CAS  PubMed  Google Scholar 

  65. Broocks G, Flottmann F, Ernst M, Faizy TD, Minnerup J, Siemonsen S, Fiehler J, Kemmling A. Computed tomography-based imaging of voxel-wise lesion water uptake in ischemic brain: relationship between density and direct volumetry. Investig Radiol. 2018;53:207–13.

    Article  Google Scholar 

  66. Faizy TD, Kabiri R, Christensen S, et al. Perfusion imaging-based tissue-level collaterals predict ischemic lesion net water uptake in patients with acute ischemic stroke and large vessel occlusion. J Cereb Blood Flow Metab. 2021;41:2067–75.

    Article  CAS  PubMed Central  Google Scholar 

  67. Minnerup J, Broocks G, Kalkoffen J, et al. Computed tomography-based quantification of lesion water uptake identifies patients within 4.5 hours of stroke onset: a multicenter observational study. Ann Neurol. 2016;80:924–34.

    Article  PubMed  Google Scholar 

  68. Ng FC, Yassi N, Sharma G, et al. Correlation between computed tomography-based tissue net water uptake and volumetric measures of cerebral edema after reperfusion therapy. Stroke. 2022;53:2628–36.

    Article  CAS  PubMed  Google Scholar 

  69. Kumar A, Chen Y, Corbin A, et al. Automated measurement of net water uptake from baseline and follow-up CTs in patients with large vessel occlusion stroke. Front Neurol. 2022;13:898728.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Feng Y-S, Tan Z-X, Wang M-M, Xing Y, Dong F, Zhang F. Inhibition of NLRP3 inflammasome: a prospective target for the treatment of ischemic stroke. Front Cell Neurosci. 2020;14:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Manley GT, Binder DK, Papadopoulos MC, Verkman AS. New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience. 2004;129:983–91.

    Article  CAS  PubMed  Google Scholar 

  72. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA, Gerzanich V. Newly expressed SUR1-regulated NC(ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med. 2006;12:433–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sheth KN, Kimberly WT, Elm JJ, et al. Pilot study of intravenous glyburide in patients with a large ischemic stroke. Stroke. 2014;45:281–3.

    Article  CAS  PubMed  Google Scholar 

  74. Jha RM, Koleck TA, Puccio AM, et al. Regionally clustered ABCC8 polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury. J Neurol Neurosurg Psychiatry. 2018;89:1152–62.

    Article  PubMed  Google Scholar 

  75. van Kranendonk KR, Treurniet KM, Boers AMM, et al. Hemorrhagic transformation is associated with poor functional outcome in patients with acute ischemic stroke due to a large vessel occlusion. J Neurointerv Surg. 2019;11:464–8.

    Article  PubMed  Google Scholar 

  76. Fiorelli M, Bastianello S, von Kummer R, del Zoppo GJ, Larrue V, Lesaffre E, Ringleb AP, Lorenzano S, Manelfe C, Bozzao L. Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the European cooperative acute stroke study I (ECASS I) cohort. Stroke. 1999;30:2280–4.

    Article  CAS  PubMed  Google Scholar 

  77. Fernández-Cadenas I, Del Río-Espínola A, Carrera C, et al. Role of the MMP9 gene in hemorrhagic transformations after tissue-type plasminogen activator treatment in stroke patients. Stroke. 2012;43:1398–400.

    Article  PubMed  Google Scholar 

  78. del Río-Espínola A, Fernández-Cadenas I, Giralt D, et al. A predictive clinical-genetic model of tissue plasminogen activator response in acute ischemic stroke. Ann Neurol. 2012;72:716–29.

    Article  PubMed  Google Scholar 

  79. Carrera C, Cullell N, Torres-Águila N, et al. Validation of a clinical-genetics score to predict hemorrhagic transformations after rtPA. Neurology. 2019;93:e851–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. van Kranendonk KR, Treurniet KM, Boers AMM, et al. Added prognostic value of hemorrhagic transformation quantification in patients with acute ischemic stroke. Front Neurol. 2020;11:582767.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cuadrado E, Ortega L, Hernández-Guillamon M, Penalba A, Fernández-Cadenas I, Rosell A, Montaner J. Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J Leukoc Biol. 2008;84:207–14.

    Article  CAS  PubMed  Google Scholar 

  82. García-Berrocoso T, Penalba A, Boada C, et al. From brain to blood: new biomarkers for ischemic stroke prognosis. J Proteome. 2013;94:138–48.

    Article  Google Scholar 

  83. Yuan D, Liu C, Hu B. Dysfunction of membrane trafficking leads to ischemia-reperfusion injury after transient cerebral ischemia. Transl Stroke Res. 2018;9:215–22.

    Article  CAS  PubMed  Google Scholar 

  84. Dargazanli C, Zub E, Deverdun J, et al. Machine learning analysis of the cerebrovascular thrombi proteome in human ischemic stroke: an exploratory study. Front Neurol. 2020;11:575376.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Irvine HJ, Acharjee A, Wolcott Z, Ament Z, Hinson HE, Molyneaux BJ, Simard JM, Sheth KN, Kimberly WT. Hypoxanthine is a pharmacodynamic marker of ischemic brain edema modified by glibenclamide. Cell Rep Med. 2022;3:100654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sheth KN, Petersen NH, Cheung K, Elm JJ, Hinson HE, Molyneaux BJ, Beslow LA, Sze GK, Simard JM, Kimberly WT. Long-term outcomes in patients aged ≤70 years with intravenous glyburide from the phase II GAMES-RP study of large hemispheric infarction: an exploratory analysis. Stroke. 2018;49:1457–63.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hanley DF, Thompson RE, Rosenblum M, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 2019;393:1021–32.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Stamova B, Ander BP, Jickling G, et al. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. J Cereb Blood Flow Metab. 2019;39:1818–35.

    Article  CAS  PubMed  Google Scholar 

  89. Askenase MH, Goods BA, Beatty HE, et al. Longitudinal transcriptomics define the stages of myeloid activation in the living human brain after intracerebral hemorrhage. Sci Immunol. 2021;6:eabd6279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  CAS  PubMed  Google Scholar 

  91. Meller R, Pearson A, Simon RP. Dynamic changes in DNA methylation in ischemic tolerance. Front Neurol. 2015;6:102.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Morris-Blanco KC, Kim T, Lopez MS, Bertogliat MJ, Chelluboina B, Vemuganti R. Induction of DNA hydroxymethylation protects the brain after stroke. Stroke. 2019;50:2513–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stamatovic SM, Phillips CM, Martinez-Revollar G, Keep RF, Andjelkovic AV. Involvement of epigenetic mechanisms and non-coding RNAs in blood-brain barrier and neurovascular unit injury and recovery after stroke. Front Neurosci. 2019;13:864.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Guan J-S, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature. 2009;459:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Langley B, Brochier C, Rivieccio MA. Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke. Stroke. 2009;40:2899–905.

    Article  CAS  PubMed  Google Scholar 

  96. Soriano-Tárraga C, Lazcano U, Giralt-Steinhauer E, et al. Identification of 20 novel loci associated with ischaemic stroke. Epigenome-wide association study. Epigenetics. 2020;15:988–97.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cullell N, Mola-Caminal M, Soriano-Tarraga C, et al. An epigenome wide association study reveals an altered methylation pattern associated with acute neurological outcome after ischemic stroke. Neurol Genet. 2017;3:S12–8.

    Google Scholar 

  98. Debette S, Bis JC, Fornage M, et al. Genome-wide association studies of MRI-defined brain infarcts: meta-analysis from the CHARGE consortium. Stroke. 2010;41:210–7.

    Article  CAS  PubMed  Google Scholar 

  99. Kim BJ, Kim Y, Youn DH, Park JJ, Rhim JK, Kim HC, Kang K, Jeon JP. Genome-wide blood DNA methylation analysis in patients with delayed cerebral ischemia after subarachnoid hemorrhage. Sci Rep. 2020;10:11419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Soriano-Tárraga C, Mola-Caminal M, Giralt-Steinhauer E, et al. Biological age is better than chronological as predictor of 3-month outcome in ischemic stroke. Neurology. 2017;89:830–6.

    Article  PubMed  Google Scholar 

  101. Davis Armstrong NM, Chen W-M, Brewer MS, Williams SR, Sale MM, Worrall BB, Keene KL. Epigenome-wide analyses identify two novel associations with recurrent stroke in the vitamin intervention for stroke prevention clinical trial. Front Genet. 2018;9:358.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Elder J, Cortes M, Rykman A, Hill J, Karuppagounder S, Edwards D, Ratan RR. The epigenetics of stroke recovery and rehabilitation: from polycomb to histone deacetylases. Neurotherapeutics. 2013;10:808–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bejleri J, Jirström E, Donovan P, Williams DJ, Pfeiffer S. Diagnostic and prognostic circulating MicroRNA in acute stroke: a systematic and bioinformatic analysis of current evidence. J Stroke. 2021;23:162–82.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Barrera-Vázquez OS, Gomez-Verjan JC, Ramírez-Aldana R, Torre PG-D, Rivero-Segura NA. Structural and pharmacological network analysis of miRNAs involved in acute ischemic stroke: a systematic review. Int J Mol Sci. 2022;23:4663.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bulygin KV, Beeraka NM, Saitgareeva AR, et al. Can miRNAs be considered as diagnostic and therapeutic molecules in ischemic stroke pathogenesis?-current status. Int J Mol Sci. 2020;21:E6728.

    Article  Google Scholar 

  106. Huang L, Ma Q, Li Y, Li B, Zhang L. Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp Neurol. 2018;300:41–50.

    Article  CAS  PubMed  Google Scholar 

  107. Halldorsson BV, Eggertsson HP, Moore KHS, et al. The sequences of 150,119 genomes in the UK biobank. Nature. 2022;607:732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bycroft C, Freeman C, Petkova D, et al. The UK biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Raffeld MR, Debette S, Woo D. International stroke genetics consortium update. Stroke. 2016;47:1144–5.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Crawford KM, Gallego-Fabrega C, Kourkoulis C, et al. Cerebrovascular disease knowledge portal: an open-access data resource to accelerate genomic discoveries in stroke. Stroke. 2018;49:470–5.

    Article  PubMed  PubMed Central  Google Scholar 

  111. McArdle PF, Kittner SJ, Ay H, et al. Agreement between TOAST and CCS ischemic stroke classification: the NINDS SiGN study. Neurology. 2014;83:1653–60.

    Article  PubMed  PubMed Central  Google Scholar 

  112. NINDS Stroke Genetics Network (SiGN), International Stroke Genetics Consortium (ISGC). Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol. 2016;15:174–84.

    Article  PubMed  Google Scholar 

  113. Robinson JR, Wei W-Q, Roden DM, Denny JC. Defining phenotypes from clinical data to drive genomic research. Annu Rev Biomed Data Sci. 2018;1:69–92.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gunter D, Puac-Polanco P, Miguel O, Thornhill RE, Yu AYX, Liu ZA, Mamdani M, Pou-Prom C, Aviv RI. Rule-based natural language processing for automation of stroke data extraction: a validation study. Neuroradiology. 2022;64:2357–62. https://doi.org/10.1007/s00234-022-03029-1.

    Article  PubMed  Google Scholar 

  115. Miller MI, Orfanoudaki A, Cronin M, et al. Natural language processing of radiology reports to detect complications of ischemic stroke. Neurocrit Care. 2022;37:291–302.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kho AN, Pacheco JA, Peissig PL, et al. Electronic medical records for genetic research: results of the eMERGE consortium. Sci Transl Med. 2011;3:79re1.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dofuku S, Sonehara K, Miyawaki S, et al. Genome-wide association study of intracranial artery stenosis followed by phenome-wide association study. Transl Stroke Res. 2022;14:322–33. https://doi.org/10.1007/s12975-022-01049-w.

    Article  CAS  PubMed  Google Scholar 

  118. Lindgren AG, Braun RG, Juhl Majersik J, et al. International stroke genetics consortium recommendations for studies of genetics of stroke outcome and recovery. Int J Stroke. 2022;17:260–8.

    Article  PubMed  Google Scholar 

  119. Liebeskind DS, Albers GW, Crawford K, et al. Imaging in StrokeNet: realizing the potential of big data. Stroke. 2015;46:2000–6.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Giese A-K, Schirmer MD, Donahue KL, et al. Design and rationale for examining neuroimaging genetics in ischemic stroke: the MRI-GENIE study. Neurol Genet. 2017;3:e180.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Meschia JF, Arnett DK, Ay H, et al. Stroke genetics network (SiGN) study: design and rationale for a genome-wide association study of ischemic stroke subtypes. Stroke. 2013;44:2694–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Marcus DS, Olsen TR, Ramaratnam M, Buckner RL. The extensible neuroimaging archive toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics. 2007;5:11–34.

    Article  PubMed  Google Scholar 

  123. Persyn E, Hanscombe KB, Howson JMM, Lewis CM, Traylor M, Markus HS. Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nat Commun. 2020;11:2175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bonkhoff AK, Bretzner M, Hong S, et al. Sex-specific lesion pattern of functional outcomes after stroke. Brain Commun. 2022;4:fcac020.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bonkhoff AK, Schirmer MD, Bretzner M, et al. Outcome after acute ischemic stroke is linked to sex-specific lesion patterns. Nat Commun. 2021;12:3289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Schirmer MD, Donahue KL, Nardin MJ, et al. Brain volume: an important determinant of functional outcome after acute ischemic stroke. Mayo Clin Proc. 2020;95:955–65.

    Article  PubMed  Google Scholar 

  127. Mohammadian Foroushani H, Dhar R, Chen Y, Gurney J, Hamzehloo A, Lee J-M, Marcus DS. The stroke neuro-imaging phenotype repository: an open data science platform for stroke research. Front Neuroinform. 2021;15:597708.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Muschelli J. Recommendations for processing head CT data. Front Neuroinform. 2019;13:61.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Pexman JH, Barber PA, Hill MD, Sevick RJ, Demchuk AM, Hudon ME, Hu WY, Buchan AM. Use of the Alberta stroke program early CT score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001;22:1534–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Doran SJ, Al Sa’d M, Petts JA, et al. Integrating the OHIF viewer into XNAT: achievements, challenges and prospects for quantitative imaging studies. Tomography. 2022;8:497–512.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Urday S, Beslow LA, Goldstein DW, Vashkevich A, Ayres AM, Battey TWK, Selim MH, Kimberly WT, Rosand J, Sheth KN. Measurement of perihematomal edema in intracerebral hemorrhage. Stroke. 2015;46:1116–9.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lee E-J, Kim Y-H, Kim N, Kang D-W. Deep into the brain: artificial intelligence in stroke imaging. J Stroke. 2017;19:277–85.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Dhar R, Falcone GJ, Chen Y, et al. Deep learning for automated measurement of hemorrhage and perihematomal edema in supratentorial intracerebral hemorrhage. Stroke. 2020;51:648–51.

    Article  PubMed  Google Scholar 

  134. Ironside N, Chen C-J, Mutasa S, et al. Fully automated segmentation algorithm for perihematomal edema volumetry after spontaneous intracerebral hemorrhage. Stroke. 2020;51:815–23.

    Article  PubMed  Google Scholar 

  135. Muschelli J, Sweeney EM, Ullman NL, Vespa P, Hanley DF, Crainiceanu CM. PItcHPERFeCT: primary intracranial hemorrhage probability estimation using random forests on CT. Neuroimage Clin. 2017;14:379–90.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chen Y, Dhar R, Heitsch L, et al. Automated quantification of cerebral edema following hemispheric infarction: application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs. Neuroimage Clin. 2016;12:673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Schirmer MD, Dalca AV, Sridharan R, et al. White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts—the MRI-GENIE study. Neuroimage Clin. 2019;23:101884.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wu O, Winzeck S, Giese A-K, et al. Big data approaches to phenotyping acute ischemic stroke using automated lesion segmentation of multi-center magnetic resonance imaging data. Stroke. 2019;50:1734–41.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Georgakis MK, Gill D. Mendelian randomization studies in stroke: exploration of risk factors and drug targets with human genetic data. Stroke. 2021;52:2992–3003.

    Article  PubMed  Google Scholar 

  140. Georgakis MK, Gill D, Rannikmäe K, et al. Genetically determined levels of circulating cytokines and risk of stroke. Circulation. 2019;139:256–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gill D, James NE, Monori G, et al. Genetically determined risk of depression and functional outcome after ischemic stroke. Stroke. 2019;50:2219–22.

    Article  PubMed  Google Scholar 

  142. Taschler B, Smith SM, Nichols TE. Causal inference on neuroimaging data with mendelian randomisation. NeuroImage. 2022;258:119385.

    Article  PubMed  Google Scholar 

  143. Appunni S, Rubens M, Ramamoorthy V, Saxena A, McGranaghan P, Veledar E. Stroke genomics: current knowledge, clinical applications and future possibilities. Brain Sci. 2022;12:302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Storm CS, Kia DA, Almramhi MM, Bandres-Ciga S, Finan C, Hingorani AD, Wood NW, International Parkinson’s Disease Genomics Consortium (IPDGC). Finding genetically-supported drug targets for Parkinson’s disease using mendelian randomization of the druggable genome. Nat Commun. 2021;12:7342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Falcone GJ, Biffi A, Devan WJ, et al. Burden of blood pressure-related alleles is associated with larger hematoma volume and worse outcome in intracerebral hemorrhage. Stroke. 2013;44:321–6.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Fernandez-Cadenas I, Del Rio-Espinola A, Domingues-Montanari S, et al. Genes involved in hemorrhagic transformations that follow recombinant t-PA treatment in stroke patients. Pharmacogenomics. 2013;14:495–504.

    Article  CAS  PubMed  Google Scholar 

  147. Chung J, Marini S, Pera J, et al. Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain. 2019;142:3176–89.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Turley P, Walters RK, Maghzian O, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50:229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. O’Reilly PF, Hoggart CJ, Pomyen Y, Calboli FCF, Elliott P, Jarvelin M-R, Coin LJM. MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PLoS One. 2012;7:e34861.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Mägi R, Horikoshi M, Sofer T, Mahajan A, Kitajima H, Franceschini N, MI MC, Morris AP, COGENT-Kidney Consortium, T2D-GENES Consortium. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum Mol Genet. 2017;26:3639–50.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Moo Lee .

Editor information

Editors and Affiliations

Ethics declarations

Dr. Dhar is supported by NINDS grants K23NS099440 and R01NS121218. Dr. Giles is supported by AHA grant 827,728. Dr. Lee is supported by NINDS grants R01NS085419 and U24NS10723.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Mayo Clinic, The Editor(s) and The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giles, J.A., Lee, JM., Dhar, R. (2024). Multi-Omics Approaches to Discovering Acute Stroke Injury and Recovery Mechanisms. In: Sharma, P., Meschia, J.F. (eds) Stroke Genetics. Springer, Cham. https://doi.org/10.1007/978-3-031-41777-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41777-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41776-4

  • Online ISBN: 978-3-031-41777-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics