Skip to main content

Automation of Programming for Promising High-Performance Computing Systems

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2023)

Abstract

Automation of parallel programming may focus on various tasks the programmer is burdened while developing a parallel program. Related tools assist the program profiling and aid the programmer with transforming the program to a form suitable for the efficient parallelization. Finally, these tools express an implicit program parallelism using a chosen programming model and optimize the parallel program for target architectures. However, the choice of the target Application Programming Interfaces (API) is of great importance in the development of interactive parallelization tools. On the one hand, the perfect choice of API should ensure the programming of the variety of modern and promising architectures. On the other hand, API must simplify the development of assistant tools and allow the programmer to explore the decisions made by the automated parallelization system. System FOR Automated Parallelization (SAPFOR) is an umbrella of assistant tools designed to automate parallel programming. It accomplishes various tasks and allows the user to take an advantage of the interactive semi-automatic parallelization. SAPFOR expresses parallelism using the DVMH directive-based programming model, which aims at developing efficient parallel programs for heterogeneous and hybrid computing clusters. The paper presents an empirical study that examines the capability of SAPFOR to assist parallel programming on the example of development of a parallel program for numerical simulation of hydrodynamic instabilities.

This work was supported by Moscow Center of Fundamental and Applied Mathematics, Agreement with the Ministry of Science and Higher Education of the Russian Federation, No. 075-15-2019-1623.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakhtin, V.A., Krukov, V.A.: DVM-approach to the automation of the development of parallel programs for clusters. In: Programming and Computer Software, vol. 45, no. 3, pp. 121–132 (2019) https://doi.org/10.1134/S0361768819030034

  2. Hwu, W.-M., et al.: Implicitly parallel programming models for thousand-core microprocessors. In: Proceedings of the 44th annual Design Automation Conference (DAC ’07), pp. 754–759. ACM, New York, NY, USA (2007). https://doi.org/10.1145/1278480.1278669

  3. Kataev, N.: Interactive Parallelization of C Programs in SAPFOR. In: Scientific Services & Internet 2020. In: CEUR Workshop Proceedings, vol. 2784, pp. 139–148 (2020)

    Google Scholar 

  4. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In: Proceedings of the 2004 International Symposium on Code Generation and Optimization (CGO’04). Palo Alto, California (2004)

    Google Scholar 

  5. Voevodin, V.V.: Information structure of sequential programs. Russ. J of Num. An. Math Modell. 10(3) 279–286 (1995)

    Google Scholar 

  6. Kataev, N., Smirnov, A., Zhukov A.: Dynamic data-dependence analysis in SAPFOR. In: CEUR Workshop Proceedings, vol. 2543, pp 199–208 (2020)

    Google Scholar 

  7. Kataev, Nikita: Application of the LLVM compiler infrastructure to the program analysis in SAPFOR. In: Voevodin, Vladimir, Sobolev, Sergey (eds.) RuSCDays 2018. CCIS, vol. 965, pp. 487–499. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05807-4_41

    Chapter  Google Scholar 

  8. Kataev, N.: LLVM based parallelization of C programs for GPU. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2020. CCIS, vol. 1331, pp. 436–448. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64616-5_38

    Chapter  Google Scholar 

  9. Kolganov, A.S., Kataev, N.A.: Data distribution and parallel code generation for heterogeneous computational clusters. In: Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS), vol. 34, no. (4), pp. 89–100 (2022) https://doi.org/10.15514/ISPRAS-2022-34(4)-7

  10. Tishkin, V.F., Nikishin, V.V., Popov, I.V., Favorski A.P.: Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer-Meshkov instability (in Russian), vol. 7, no. 5, pp. 15–25 (1995)

    Google Scholar 

  11. Ladonkina, M.E.: Numerical simulation of turbulent mixing using high performance systems. PHD Thesis, Institute for Mathematical Modelling RAS (2005)

    Google Scholar 

  12. Kuchugov, P.A.: Dynamics of turbulent mixing processes in laser targets. PHD Thesis, Keldysh Institute of Applied Mathematics RAS (2014)

    Google Scholar 

  13. Kuchugov, P.A.: Modeling of the implosion of thermonuclear target on heterogeneous computing systems (in Russian). In: Proceedings of international conference Parallel computational technologies (PCT’2017), pp. 399–409. Publishing of the South Ural State University, Chelyabinsk (2017)

    Google Scholar 

  14. GSL - GNU Scientific Library. https://www.gnu.org/software/gsl/ Last Accessed 6 May 2023

  15. C-DVMH language, C-DVMH compiler, compilation, execution and debugging of DVMH programs. http://dvm-system.org/static_data/docs/CDVMH-reference-en.pdf Last Accessed 6 May 2023

  16. Kataev, N., Vasilkin, V.: Reconstruction of multi-dimensional arrays in SAPFOR. In: CEUR Workshop Proceedings, vol. 2543, pp. 209–218 (2020)

    Google Scholar 

  17. Heterogeneous cluster K60. https://www.kiam.ru/MVS/resourses/k60.html. Last Accessed 6 May 2023

  18. Beaugnon, U., Kravets, A., Sven van Haastregt, Baghdadi, R., Tweed, D., Absar, J., Lokhmotov, A.: Vobla: A vehicle for optimized basic linear algebra. In: Proceeidngs of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded Systems, LCTES ’14, pp. 115–124, New York, NY, USA (2014)

    Google Scholar 

  19. Zhang, Y., Yang, M., Baghdadi, R., Kamil, S., Shun, J., Amarasinghe, S.: Graphit: A high-performance graph dsl. In: Proceedings ACM Program. Lang., 2(OOPSLA), pp. 121:1–121:30 (2018)

    Google Scholar 

  20. An, P., et al.: STAPL: an adaptive, generic parallel C++ library. In: Dietz, Henry G.. (ed.) LCPC 2001. LNCS, vol. 2624, pp. 193–208. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-35767-X_13

    Chapter  Google Scholar 

  21. Bell, N., Hoberock, J.: Thrust: A Productivity-oriented library for CUDA. In: GPU Computing Gems, Jade Edition, Edited by Wen-mei W. Hwu, pp. 359–371 (2012). https://doi.org/10.1016/B978-0-12-385963-1.00026-5

  22. Kim, M., Kim, H., Luk, C.-K.: Prospector: a dynamic data-dependence profiler to help parallel programming. In: 2nd USENIX Workshop on Hot Topics in Parallelism (HotPar ’10) (2010)

    Google Scholar 

  23. Garcia, S., Jeon, D., Louie, C., Taylor, M.B.: Kremlin: rethinking and rebooting gprof for the multicore age. In: ACM SIGPLAN Notices June (2011). https://doi.org/10.1145/1993316.1993553

  24. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical automatic polyhedral parallelizer and locality optimizer. SIGPLAN Notices 43(6), 101–113 (2008)

    Google Scholar 

  25. Verdoolaege, S., Juega, J. C., Cohen, A., Gomez, J. I., Tenllado, C., Catthoor, F.: Polyhedral parallel code generation for CUDA. ACM Trans. Archit. Code Optim. 9(4), 1–23 (2013)

    Google Scholar 

  26. Grosser, T., Groesslinger, A., Lengauer. C.: Polly – performing polyhedral optimizations on a low-level intermediate representation. Parallel Process. Lett. 22(04), 1250010 (2012)

    Google Scholar 

  27. Grosser, T., Hoefler, T.: Polly-ACC Transparent compilation to heterogeneous hardware. In: ICS ’16: Proceedings of the 2016 International Conference on Supercomputing June 2016, pp. 1–13 (2016). https://doi.org/10.1145/2925426.2926286

  28. Zima, H., Bast, H., Gerndt, M.: SUPERB: a tool for semi-automatic MIMD/SIMD parallelization. Parallel Comput. 6, 1–18 (1998). https://doi.org/10.1016/0167-8191(88)90002-6

    Article  Google Scholar 

  29. Amarasingh, S. P., Lam, M. S. Communication Optimization and Code Generation for Distributed Memory Machines. In: PLDI ’93: Proceedings of the ACM SIGPLAN 1993 conference on Programming language design and implementation, pp. 126–138 (1993) https://doi.org/10.1145/155090.155102

  30. Kruse, M.: Introducing Molly: distributed memory parallelization with LLVM. CoRR, vol. abs/1409.2088 (2014). https://doi.org/10.48550/arXiv.1409.2088

  31. Vandierendonck H., Rul S., Koen De Bosschere. The Paralax infrastructure: automatic parallelization with a helping hand. In: Proceedings of 2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT), IEEE, pp. 389–400 (2010). https://doi.org/10.1145/1854273.1854322

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Kataev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bakhtin, V., Zakharov, D., Kataev, N., Kolganov, A., Yakobovskiy, M. (2023). Automation of Programming for Promising High-Performance Computing Systems. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2023. Lecture Notes in Computer Science, vol 14098. Springer, Cham. https://doi.org/10.1007/978-3-031-41673-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41673-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41672-9

  • Online ISBN: 978-3-031-41673-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics