Skip to main content

Experimental and Numerical Investigation of Clinched Joints Under Shear Tensile Loading at High Strain Rates

  • Conference paper
  • First Online:
Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity (ICTP 2023)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 1011 Accesses

Abstract

In the development of innovative lightweight solutions in automotive engineering, the use of the mechanical joining technique clinching offers the possibility of joining mixed structures with a wide range of requirement profiles. In order to be able to predict the material failure behavior of clinched structures under crash-like scenarios and to design components accordingly, investigations of the load-bearing behavior of clinched joints under high strain rate loading are necessary. For this reason, shear tensile tests on clinched joints under impact load application are to be carried out and evaluated with regard to their load-bearing capacities within the scope of this work using the aluminum alloy EN AW-6014 T4. In addition, the influence of plastic preforming of the parts to be joined is investigated. Furthermore, corresponding numerical investigations are carried out, for which the strain rate dependency of the material's plasticity is first characterized experimentally and implemented in the material model. Subsequently, the experimentally and numerically determined load-bearing capacities of the clinched joints are compared and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mallick, P.K. (ed.): Materials, Design and Manufacturing For Lightweight Vehicles. Woodhead Publishing in materials, CRC Press, Boca Raton, Fla, Oxford (2011)

    Google Scholar 

  2. DIN Deutsches Institut für Normung e. V. DIN 8593–5: Manufacturing processes joining: Part 5: Joining by forming processing - Classification, subdivision, terms and definitions(2003)

    Google Scholar 

  3. DVS - Deutscher Verband für Schweißen und verwandte Verfahren e.V. Merkblatt DVS/EFB 3420: Clinching – basics (2021)

    Google Scholar 

  4. DVS – Deutscher Verband für Schweißen und verwandte Verfahren e.V. Merkblatt DVS/EFB 3480-1: Testing of Properties of Joints Testing of properties of mechanical and hybrid (mechanical/bonded) joints (2007)

    Google Scholar 

  5. Lambiase, F., Di Ilio, A.: An experimental study on clinched joints realized with different dies. Thin-Walled Struct. 85, 71–80 (2014). https://doi.org/10.1016/j.tws.2014.08.004

    Article  Google Scholar 

  6. He, X., Zhao, L., Yang, H., et al.: Investigations of strength and energy absorption of clinched joints. Comput. Mater. Sci. 94, 58–65 (2014). https://doi.org/10.1016/j.commatsci.2014.01.056

    Article  CAS  Google Scholar 

  7. Coppieters, S., et al.: Numerical and experimental study of the multi-axial quasi-static strength of clinched connections. Int. J. Mater. Form. 6(4), 437–451 (2012). https://doi.org/10.1007/s12289-012-1097-4

    Article  Google Scholar 

  8. Mucha, J., Witkowski, W.: The clinching joints strength analysis in the aspects of changes in the forming technology and load conditions. Thin-Walled Struct. 82, 55–66 (2014). https://doi.org/10.1016/j.tws.2014.04.001

    Article  Google Scholar 

  9. Lee, C.-J., Kim, J.-Y., Lee, S.-K., et al.: Design of mechanical clinching tools for joining of aluminium alloy sheets. Mater. Des. 31, 1854–1861 (2010). https://doi.org/10.1016/j.matdes.2009.10.064

    Article  CAS  Google Scholar 

  10. Ge, Y., Xia, Y.: Mechanical characterization of a steel-aluminum clinched joint under impact loading. Thin-Walled Struct. 151, 106759 (2020). https://doi.org/10.1016/j.tws.2020.106759

    Article  Google Scholar 

  11. Hahn, O., Kurzok, J.R.: Forming technology joining of preformed sheet metals - Part 1: Steel (Umformtechnisches Fügen vorverformter Halbzeuge - Teil 1: Stahl), Als Ms. gedr. Berichte aus dem Laboratorium für Werkstoff- und Fügetechnik, vol 37. Shaker, Aachen (1998)

    Google Scholar 

  12. Hahn, O., Kurzok, J.R.: Forming technology joining of preformed sheet metals - Part 2: Aluminum (Umformtechnisches Fügen vorverformter Halbzeuge - Teil 1: Aluminium), Als Ms. gedr. Berichte aus dem Laboratorium für Werkstoff- und Fügetechnik, vol 37. Shaker, Aachen (1998)

    Google Scholar 

  13. Bielak, C., Böhnke, M., Beck, R., et al.: Numerical analysis of the robustness of clinching process considering the pre-forming of the parts, vol. 3 (2021)

    Google Scholar 

  14. Bielak, C.R., Böhnke, M., Bobbert, M., et al.: Further development of a numerical method for analyzing the load capacity of clinched joints in versatile process chains. ESAFORM 2021 (2021). https://doi.org/10.25518/esaform21.4298

  15. Jiang, T., Liu, Z.-X., Wang, P.-C.: Effect of aluminum pre-straining on strength of clinched galvanized SAE1004 steel-to-AA6111-T4 aluminum. J. Mater. Process. Technol. 215, 193–204 (2015). https://doi.org/10.1016/j.jmatprotec.2014.08.016

    Article  CAS  Google Scholar 

  16. Novelis GLobal Automotive. EN AW-6014 T4 - Material Data Sheet: Novelis Advanz 6F - e170 (2019)

    Google Scholar 

  17. Bielak, C.R., Böhnke, M., Bobbert, M., Meschut,. G. (ed.): Experimental und numerical Investigation on manufacturing-induced pre-strain on the load-bearing capacity of clinched joints(2022)

    Google Scholar 

  18. Böhme, W., Luke, M., Blauel, J.G., et al.: Dynamic material characteristics for crash simulation (Dynamische Werkstoffkennwerte für die Crashsimulation). FAT- Publications (2007)

    Google Scholar 

  19. Böhnke, M., Unruh, E., Sell, S., et al.: Functionality study of an optical measurement concept for local force signal determination in high strain rate tensile tests. KEM 926, 1564–1572 (2022). https://doi.org/10.4028/p-wpuzyw

    Article  Google Scholar 

  20. Bielak, C.R., Böhnke, M., Bobbert, M., Meschut, G.: Development of a numerical 3D model for analyzing clinched joints in versatile process chains. In: Inal, K., Levesque, J., Worswick, M., Butcher, C. (eds.) NUMISHEET 2022: Proceedings of the 12th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, pp. 165–172. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-06212-4_15

    Chapter  Google Scholar 

  21. Böhnke, M., Kappe, F., Bobbert, M., et al.: Influence of various procedures for the determination of flow curves on the predictive accuracy of numerical simulations for mechanical joining processes. Mater. Test. 63, 493–500 (2021). https://doi.org/10.1515/mt-2020-0082

    Article  CAS  Google Scholar 

  22. Kupfer, R., Köhler, D., Römisch, D., et al.: Clinching of aluminum materials – methods for the continuous characterization of process, microstructure and properties. J. Adv. Join. Process. 5, 100108 (2022). https://doi.org/10.1016/j.jajp.2022.100108

    Article  Google Scholar 

  23. Friedlein, J.: Influence of plastic orthotropy on clinching of sheet metal. In: Sheet Metal 2023. Materials Research Forum LLC, pp. 133–140 (2023)

    Google Scholar 

  24. Böhnke, M., Rossel, M., Bielak, C.R., Bobbert, M., Meschut, G.: Concept development of a method for identifying friction coefficients for the numerical simulation of clinching processes. Int. J. Adv. Manufac. Technol. 118(5–6), 1627–1639 (2021). https://doi.org/10.1007/s00170-021-07986-4

    Article  Google Scholar 

Download references

Acknowledgement

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – TRR 285 – Project-ID 418701707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Böhnke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Böhnke, M., Bielak, C.R., Bobbert, M., Meschut, G. (2024). Experimental and Numerical Investigation of Clinched Joints Under Shear Tensile Loading at High Strain Rates. In: Mocellin, K., Bouchard, PO., Bigot, R., Balan, T. (eds) Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity. ICTP 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-41341-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41341-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41340-7

  • Online ISBN: 978-3-031-41341-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics