Skip to main content

Interaction Between Crystals, Inflammation, and Cancer

  • Chapter
  • First Online:
Cholesterol Crystals in Atherosclerosis and Other Related Diseases

Abstract

The processes that lead to the development and spread of cancer are complex. Although it is thought that chronic inflammation may promote mitogenesis that in turn leads to mutagenesis, the crystals known to cause cancer including silica and calcium oxalate have been demonstrated to directly damage DNA.  Furthermore, while chronic inflammation related to cholesterol crystals can lead to the formation of granuloma, and uric acid (UA) crystals can lead to formation of tophi, neither lesion undergo malignant transformation. Thus, crystal induced cancer and crystal induced inflammation may not be directly related. 

Various crystals do develop de-novo in the tumor microenvironment (TME), as abnormal trafficking of metabolites and cellular necrosis predisposes to the accumulation and crystallization of calcium, cholesterol, and UA. These crystals have the potential to cause direct cellular and tissue trauma and to enhance the pro-inflammatory milieu of the TME and thereby contribute to tumor growth, hemorrhage, and spread.

Although post-hoc analysis of clinical trials and animal studies raise the tantalizing possibility that therapies used for secondary prevention of atherosclerosis including aspirin, lipid lowering therapy, and colchicine may prevent or slow the development of some cancers, current evidence does not support their use, however, ongoing clinical trials are actively investigating this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sato T, Shimosato T, Klinman DM. Silicosis and lung cancer: current perspectives. Lung Cancer (Auckl). 2018;9:91–101.

    PubMed  Google Scholar 

  2. Kim H-R, Kim B, Jo BS, Lee J-W. Silica exposure and work-relatedness evaluation for occupational cancer in Korea. Ann Occup Environ Med. 2018;30:4. https://doi.org/10.1186/s40557-018-0216-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ramada Rodilla JM, Cerradab BC, Pujadas CS, Delclos GL, Benavidesa FG. Fiber burden and asbestos-related diseases: an umbrella review. Gac Sanit. 2022;36:173–83. https://doi.org/10.1016/j.gaceta.2021.04.001.

    Article  PubMed  Google Scholar 

  4. https://www.cancer.org/content/dam/CRC/PDF/Public/664.00.pdf.

  5. Turci F, Pavan C, Leinardi R, Tomatis M, Pastero L, Garry D, Anguissola S, Lison D, Fubini B. Revisiting the paradigm of silica pathogenicity with synthetic quartz crystals: the role of crystallinity and surface disorder. Part Fibre Toxicol. 2016;13:32. https://doi.org/10.1186/s12989-016-0136-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signaling. Nat Rev Immunol. 2016;16:407–20.

    Article  CAS  PubMed  Google Scholar 

  7. Wultscha G, Setayesha T, Kundib M, Kmenta M, Nersesyana A, Fenechc M, Knasmüllera S. Induction of DNA damage as a consequence of occupational exposure to crystalline silica: a review and meta-analysis. Mutat Res Rev Mutat Res. 2021;787:108349. https://doi.org/10.1016/j.mrrev.2020.108349.

    Article  CAS  Google Scholar 

  8. Daniel LM, Mao Y, Williams AO, Saffiotti U. Direct interaction between crystalline silica and DNA: a proposed model for silica carcinogenesis. Scand J Work Environ Health. 1995;21(suppl 2):22–6.

    CAS  PubMed  Google Scholar 

  9. Tsai J-L, Tsai S-f. Calcium oxalate crystal related kidney injury in a patient receiving Roux-en Y hepaticojejunostomy due to gall bladder cancer. BMC Nephrol. 2017;18:106. https://doi.org/10.1186/s12882-017-0520-y.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Van de Pol JAA, van Den Brandt PA, Schouten LJ. Kidney stones and the risk of renal cell carcinoma and upper tract urothelial carcinoma: the Netherlands cohort study. Br J Cancer. 2019;120:368–74. https://doi.org/10.1038/s41416-018-0356-7.

    Article  PubMed  Google Scholar 

  11. Sun X-Y, Xu M, Ouyang J-M. The effect of crystal shape and aggregation of calcium oxalate monohydrate on cellular toxicitiy and renal epithelial cells. ACS Omega. 2017;9:6039–52. https://doi.org/10.1021/acsomega.7b00510.

    Article  CAS  Google Scholar 

  12. Werner H, Bapat S, Schobesberger M, Segets D, Scwaminger SP. Calcium oxalate crystallization: influence of pH, energy input, and supersaturation ratio on the synthesis of artificial kidney stones. ACS Omega. 2021;6:26566–74. http://pubs.acs.org/journal/acsodf.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peerapen P, Boonmark W, Putpeerawit P, Thongboonkerd V. Calcium oxalate crystals trigger epithelial-mesenchymal transition and carcinogenic features in renal cells: a crossroad between kidney stone disease and renal cancer. Exp Hematol Oncol. 2022;11:62. https://doi.org/10.1186/s40164-022-00320-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kitahara CM, Berrington de González A, Freedman ND, Huxley R, Mok Y, Jee SH, Samet JM. Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol. 2011;29:1592–8. https://doi.org/10.1200/JCO.2010.31.5200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rock KL, Kataoka H, Lai J-J. Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol. 2013;9:13–23. https://doi.org/10.1038/nrrheum.2012.143; published online 4 September 2012.

    Article  CAS  PubMed  Google Scholar 

  16. Ishikawa Y, Fujio A, Tokodai K. Cholesterol granuloma of the liver mimicking malignant tumor: a case report. Tohoku J Exp Med. 2022;256:235–40. https://doi.org/10.1620/tjem.256.235.

    Article  PubMed  Google Scholar 

  17. Baghban R, Roshangar L, Jahaban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18:59. https://doi.org/10.1186/s12964-020-0530-4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. White CP. On the occurrence of crystals in tumours. J Pathol Bacteriol. 1909;13:1–10. https://doi.org/10.1002/path.1700130103.

    Article  Google Scholar 

  19. Abela GS, Leja M, Janoudi A, Perry D, Richard J, De Feijter-Rupp H, Vanderberg A. Relationship between atherosclerosis and certain solid cancer tumors. J Am Coll Card. 2019;73(9 Suppl 1):156.

    Article  Google Scholar 

  20. Scott R, Stone N, Kendall C, Geraki K, Rogers K. Relationships between pathology and crystal structure in breast calcifications: an in situ X-ray diffraction study in histological sections. NPJ Breast Cancer. 2016;2:16029. https://doi.org/10.1038/npjbcancer.2016.29; published online 14 September 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cheung HS, Devine TR, Hubbard W. Calcium phosphate particle induction of metalloproteinase and mitogenesis: effect of particle sizes. Osteoarthr Cartil. 1997;5:145–51.

    Article  CAS  Google Scholar 

  22. Castellaro AM, Tonda A, Cejas HH, Ferreyra H, Caputto BL, Pucci OA, Gil GA. Oxalate induces breast cancer. BMC Cancer. 2015;15:761. https://doi.org/10.1186/s12885-015-1747-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scimeca M, Giannini E, Antonacci C, Pistolese CA, Spagnoli LG, Bonanno E. Microcalcifications in breast cancer: an active phenomenon mediated by epithelial cells with mesenchymal characteristics. BMC Cancer. 2014;14:286. http://www.biomedcentral.com/1471-2407/14/286.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Richters A, Sherwin RP. The occurrence of biologic crystals in tumor and nontumor culture of C3H/HeJ mice. Cancer Res. 1965;25:214–9.

    CAS  PubMed  Google Scholar 

  25. Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer: rethinking the link. Biomed Pharmacother. 2021;140:111758. https://doi.org/10.1016/j.biopha.2021.111758.

    Article  CAS  PubMed  Google Scholar 

  26. Koene RJ, Prizment AE, Blaes A, et al. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133:1104–14.

    Google Scholar 

  27. Virmani, R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.

    Google Scholar 

  28. Isner JM. Cancer & atherosclerosis: broad mandate of angiogenesis. Circulation. 1999;6:1653.

    Article  Google Scholar 

  29. Barger C, Beeuwkes R III, Lainey LL, Silverman KJ. Hypothesis: vasa Vasorum and neovascularization of human coronary arteries—a possible role in pathophysiology of atherosclerosis. N Engl J Med. 1984;310:175–7.

    Article  CAS  PubMed  Google Scholar 

  30. Xu J, Lu X, Shi GP. Vasa vasorum in atherosclerosis and clinical significance.Int J Mol Sci. 2015;16:11574–608.

    Google Scholar 

  31. Abela GS, Katkoori VR, Pathak DR, et al. Cholesterol crystals induce mechanical trauma, inflammation and neovascularization in solid cancers as in atherosclerosis. Am Heart J Plus. 2023;35:100317. https://doi.org/10.1016/j.ahjo.2023.100317.

  32. Gao Y, Foster R, Yang X, et al. Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget. 2015;6(11):9313–26.

    Google Scholar 

  33. Espinosa JM. Histone H2B ubiquitination: the cancer connection. Genes Dev. 2008;22:2743–9.

    Google Scholar 

  34. Abela GS, Aziz K, Vedre A, et al. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol. 2009;103:959–68.

    Google Scholar 

  35. Al-Handawi MB, Commins P, Karothu DP, et al. Mechanical and crystallographic analysis of cholesterol crystals puncturing biological membranes. Chem Eur J. 2018;24:11493–7.

    Google Scholar 

  36. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92. https://doi.org/10.1016/j.cell.2011.09.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cao Y, Nishihara R, Wu K, Wang M, Ogino S, Willett WC, Spiegelman D, Fuchs CS, Giovannucci EL, Chan AT. Population-wide impact of long-term use of aspirin and the risk for cancer. JAMA Oncol. 2016;2:762. https://doi.org/10.1001/jamaoncol.2015.6396.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu X, Rao G, Rinz R. Uric acid crystals as a novel adjuvant for breast cancer immunotherapy in a syngeneic and somatic mouse model. Cancer Res. 2009;69(9_Supplement):369.

    Google Scholar 

  39. Tapia-Vieyra JV, Delgado-Coello B, Mas-Oliva J. Atherosclerosis and cancer; a resemblance with far-reaching implications. Arch Med Res. 2017;48:12–26.

    Article  CAS  PubMed  Google Scholar 

  40. Demierre M-F, Higgins PDR, Gruber SB, Hawk E, Lippman SM. Statins and cancer prevention. Nat Rev Cancer. 2005;5:930–42. https://doi.org/10.1038/nrc1751.

    Article  CAS  PubMed  Google Scholar 

  41. Di Bello E, Zwergel C, Mai A, Valente S. The innovative potential of statins in cancer: new targets for new therapies. Front Chem. 2020;8:516. https://doi.org/10.3389/fchem.2020.00516. eCollection 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacobs D, Blackburn H, Higgins M, Reed D, Iso H, McMillan G, Neaton J, Nelson J, Potter J, Rifkind B, Rossouw J, Shekelle R, Yusuf S. For participants in the conference on low cholesterol: mortality associations report of the conference on low blood cholesterol: mortality associations. Circulation. 1992;86:1046–60.

    Article  CAS  PubMed  Google Scholar 

  43. Benn M, Tybjærg-Hansen A, Stender S, Frikke-Schmidt R, Nordestgaard BG. Low-density lipoprotein cholesterol and the risk of cancer: a mendelian randomization study. J Natl Cancer Inst. 2011;103:508–19.

    Article  CAS  PubMed  Google Scholar 

  44. Barbalata CI, Tefas LR, Achim M, Tomuta I, Porfire AS. Statins in risk-reduction and treatment of cancer. World J Clin Oncol. 2020;11(8):573–88. https://doi.org/10.5306/wjco.v11.i8.573.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanism, and consequences. Immunity. 2019;51:27i–41.

    Article  Google Scholar 

  46. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  CAS  PubMed  Google Scholar 

  47. Düewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind F, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien G, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Swirski FK. From clonal haematopoiesis to the CANTOS trial. Nat Rev Cardiol. 2018;15:79–80. https://doi.org/10.1038/nrcardio.2017.208.

    Article  PubMed  Google Scholar 

  49. Jaiswal S, Natarajan P, Silver AJ, et al. Clonal heamtopoiesis and risk for atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21. https://doi.org/10.1056/NEJMoa1701719.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zappavigna S, Cossu AM, Grimaldi A, et al. Anti-inflammatory drugs as anticancer agents. Int J Mol Sci. 2020;21:2605. https://doi.org/10.3390/ijms21072605./jnci/djr008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wong CC, Baum J, Silvestro A, et al. Inhibition of IL1β by canakinumab may be effective against diverse molecular subtypes of lung cancer: an exploratory analysis of the CANTOS trial. Cancer Res. 2020;80(24):5597–605. https://doi.org/10.1158/0008-5472.CAN-19-3176. Epub 2020 Oct 6.

    Article  CAS  PubMed  Google Scholar 

  52. Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:1833–42. https://doi.org/10.1016/S0140-6736(17)32247-X.

    Article  CAS  PubMed  Google Scholar 

  53. Tan DS, Felip E, Castro G, et al. Association for Cancer Research. Canakinumab in combination with first-line (1L) pembrolizumab plus chemotherapy for advanced non-small cell lung cancer (aNSCLC): results from the CANOPY-1 phase 3 trial. Cancer Res. 2022;82(12_Supplement):CT037. https://doi.org/10.1158/1538-7445.AM2022-CT037.

    Article  Google Scholar 

  54. McNeil JJ, Wolfe R, Woods RL, ASPREE Investigator Group, et al. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N Engl J Med. 2018;379:1509–18. https://doi.org/10.1056/NEJMoa1805819erly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen WY, Ballman KV, Viner EP, et al. A randomized phase III, double-blinded, placebo-controlled trial of aspirin as adjuvant therapy for breast cancer (A011502): the aspirin after breast cancer (ABC). Trial J Clin Oncol. 2022;40 suppl ASCO (abstract # 360922):360922. https://doi.org/10.1200/JCO.2022.40.36_suppl.360922.

    Article  Google Scholar 

  56. Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. N Engl J Med. 2012;367:1792–802.

    Article  CAS  PubMed  Google Scholar 

  57. Abela GS, Vedre A, Janoudi A, Huang R, Durga S, Tamhane U. Effect of statins on cholesterol crystallization and atherosclerotic plaque stabilization. Am J Cardiol. 2011;107:1710–7. https://doi.org/10.1016/j.amjcard.2011.02.336.

    Article  CAS  PubMed  Google Scholar 

  58. Fry L, Lee A, Khan S, Aziz K, Vedre A, Abela GS. Effect of aspirin on cholesterol crystallization: a potential mechanism for plaque stabilization. Am Heart J Plus. 2022;13:100083. https://doi.org/10.1016/j.ahjo.2021.100083.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Mark Nidorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nidorf, S.M. et al. (2023). Interaction Between Crystals, Inflammation, and Cancer. In: Abela, G.S., Nidorf, S.M. (eds) Cholesterol Crystals in Atherosclerosis and Other Related Diseases. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-41192-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41192-2_22

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-41191-5

  • Online ISBN: 978-3-031-41192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics