Skip to main content

The Hypersimplex

  • Chapter
  • First Online:
Combinatorial Aspects of Scattering Amplitudes

Part of the book series: Springer Theses ((Springer Theses))

  • 104 Accesses

Abstract

In 1987, the foundational work of Gelfand-Goresky-MacPherson-Serganova initiated the study of the Grassmannian and torus orbits in the Grassmannian via the moment map and matroid polytopes, which arise as moment map images of (closures of) torus orbits. The moment map image of the (positive) Grassmannian \({{\,\textrm{Gr}\,}}_{k+1,n}\) is the \((n-1)\)-dimensional hypersimplex \(\Delta _{k+1,n} \subseteq \mathbb {R}^n\), the convex hull of the indicator vectors \(e_I\in \mathbb {R}^n\) where \(I \in {[n] \atopwithdelims ()k+1}\). In this chapter we introduce and present new results about the hypersimplex and positroid polytopes—(closures of) images of positroid cells of \({{\,\textrm{Gr}\,}}^{\ge 0}_{k+1,n}\) under the moment map. We give a full characterization of positroid polytopes which are images of positroid cells where the moment map is injective. In particular, the full-dimensional ones— we call positroid tiles—are in bijection with plabic trees. We then consider the problem of finding positroid tilings—collections of positroid tiles whose interiors are pair-wise disjoint and cover the hypersimplex. We show that the positive tropical Grassmannain \({{\,\textrm{Trop}\,}}^+{{\,\textrm{Gr}\,}}_{k+1,n}\) is the secondary fan for regular subdivisions of \(\Delta _{k+1,n}\) into positroid polytopes. In particular, maximal cones of \({{\,\textrm{Trop}\,}}^+{{\,\textrm{Gr}\,}}_{k+1,n}\) are in bijection with regular positroid tilings of \(\Delta _{k+1,n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not put any constraints on how their boundaries match up.

References

  1. I.M. Gelfand, R.M. Goresky, R.D. MacPherson, V.V. Serganova, Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63(3), 301–316 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.M. Kapranov, Chow quotients of Grassmannians. I, in I. M. Gelfand Seminar, vol. 16 of Adv. Soviet Math. Amer. Math. Soc. (Providence, RI, 1993), pp. 29–110

    Google Scholar 

  3. L. Lafforgue, Chirurgie des grassmanniennes, CRM Monograph Series, vol. 19 (American Mathematical Society, Providence, RI, 2003)

    Book  MATH  Google Scholar 

  4. D.E. Speyer, Variations on a theme of Kasteleyn, with application to the totally nonnegative Grassmannian. Electron. J. Combin. 23(2), 2.24–7 (2016)

    Google Scholar 

  5. D. Speyer, B. Sturmfels, The tropical Grassmannian. Adv. Geom. 4(3), 389–411 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Herrmann, M. Joswig, D.E. Speyer, Dressians, tropical Grassmannians, and their rays. Forum Math. 26(6), 1853–1881 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Lusztig, Total positivity in reductive groups, in Lie Theory and Geometry, vol. 123 of Progr. Math. (Birkhäuser Boston, Boston, MA, 1994), pp. 531–568

    Google Scholar 

  8. A. Postnikov, Total Positivity, Grassmannians, and Networks.’ Preprint http://math.mit.edu/~apost/papers/tpgrass.pdf

  9. K.C. Rietsch, Total Positivity and Real Flag Varieties. Ph.D. thesis (Massachusetts Institute of Technology, 1998)

    Google Scholar 

  10. A. Postnikov, D. Speyer, L. Williams, Matching polytopes, toric geometry, and the totally non-negative Grassmannian. J. Algebraic Combin. 30(2), 173–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Oh, Positroids and schubert matroids. J. Combin. Theory Ser. A 118(8), 2426–2435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Ardila, F. Rincón, L. Williams, Positroids and non-crossing partitions. Trans. Amer. Math. Soc. 368(1), 337–363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Ardila, F. Rincón, L. Williams, Positively oriented matroids are realizable. J. Eur. Math. Soc. (JEMS) 19(3), 815–833 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Tsukerman, L. Williams, Bruhat interval polytopes. Adv. Math. 285, 766–810 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Speyer, L. Williams, The tropical totally positive Grassmannian. J. Algebraic Combin. 22(2), 189–210 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Speyer, L. Williams, The positive Dressian equals the positive tropical Grassmannian. To appear in Transactions of the AMS

    Google Scholar 

  17. N. Arkani-Hamed, J. Trnka, The amplituhedron. J. High Energy Phys. 10, 33 (2014)

    ADS  MATH  Google Scholar 

  18. D.E. Speyer, A matroid invariant via the \(K\)-theory of the Grassmannian. Adv. Math. 221(3), 882–913 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. S.N. Karp, L.K. Williams, Y.X. Zhang, Decompositions of Amplituhedra (2017)

    Google Scholar 

  20. T. Łukowski, M. Parisi, L.K. Williams, The positive tropical Grassmannian, the hypersimplex, and the \(m = 2\) amplituhedron. Int. Math. Res. Not. 03, rnad010 (2023)

    Google Scholar 

  21. M. Parisi, M. Sherman-Bennett, L. Williams, The \(m=2\) amplituhedron and the hypersimplex: signs, clusters, triangulations, Eulerian numbers, 2023. Accepted and to be published in Communications of the American Mathematical Society

    Google Scholar 

  22. F. Sottile, Toric ideals, real toric varieties, and the moment map. In Topics in algebraic geometry and geometric modeling, volume 334 of Contemp. Math., pages 225–240. Amer. Math. Soc., Providence, RI, 2003.

    Google Scholar 

  23. M.F. Atiyah, Convexity and commuting Hamiltonians. Bull. London Math. Soc. 14(1), 1–15 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Guillemin, S. Sternberg, Convexity properties of the moment mapping. Invent. Math. 67(3), 491–513 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. J. Oxley, Matroid Theory, Oxford Graduate Texts in Mathematics, vol. 21, 2nd edn. (Oxford University Press, Oxford, 2011)

    Google Scholar 

  26. A.V. Borovik, I.M. Gelfand, N. White, Coxeter Matroids, Progress in Mathematics, vol. 216 (Birkhäuser Boston Inc, Boston, MA, 2003)

    Book  MATH  Google Scholar 

  27. D.J.A. Welsh, Matroid Theory (Academic Press [Harcourt Brace Jovanovich Publishers], London, 1976). L. M. S. Monographs, No. 8

    Google Scholar 

  28. F. Rincón, C. Vinzant, J. Yu, Positively hyperbolic varieties, tropicalization, and positroids. Adv. Math. 383(107677), 35 (2021)

    MathSciNet  MATH  Google Scholar 

  29. N. Early, From Weakly Separated Collections to Matroid Subdivisions (2019). Preprint http://arxiv.org/abs/1910.11522

  30. W. Fulton, Introduction to Toric Varieties, vol. 131 of Annals of Mathematics Studies. (Princeton University Press, Princeton, NJ, 1993). The William H. Roever Lectures in Geometry

    Google Scholar 

  31. D. Speyer, L.K. Williams, The positive Dressian equals the positive tropical Grassmannian. Trans. Amer. Math. Soc. Ser. B 8, 330–353 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Arkani-Hamed, T. Lam, M. Spradlin, Positive configuration space. Comm. Math. Phys. 384(2), 909–954 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. S. Herrmann, A.N. Jensen, M. Joswig, B. Sturmfels, How to draw tropical planes. Electr. J. Comb. 16 (2008)

    Google Scholar 

  34. J.A. Olarte, M. Panizzut, B. Schröter, On local Dressians of matroids, in Algebraic and Geometric Combinatorics on Lattice Polytopes (World Sci. Publ, Hackensack, NJ, 2019), pp.309–329

    Book  MATH  Google Scholar 

  35. N. Arkani-Hamed, T. Lam, M. Spradlin, Non-perturbative geometries for planar \(\cal N\it =4\) SYM amplitudes. 12 (2019)

    Google Scholar 

  36. F. Borges, F. Cachazo, Generalized Planar Feynman Diagrams: Collections (2019)

    Google Scholar 

  37. F. Cachazo, A. Guevara, B. Umbert, Y. Zhang, Planar Matrices and Arrays of Feynman Diagrams (2019)

    Google Scholar 

  38. N. Henke, G. Papathanasiou, How tropical are seven- and eight-particle amplitudes? 12 (2019)

    Google Scholar 

  39. J. Drummond, J. Foster, Ö. Gürdoğan, C. Kalousios, Algebraic singularities of scattering amplitudes from tropical geometry. 12 (2019

    Google Scholar 

  40. N. Early, Planar kinematic invariants, matroid subdivisions and generalized Feynman diagrams. 12 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Parisi .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parisi, M. (2023). The Hypersimplex. In: Combinatorial Aspects of Scattering Amplitudes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-031-41069-7_3

Download citation

Publish with us

Policies and ethics