Skip to main content

Genetics and Otitis Media

  • Chapter
  • First Online:
Textbook of Otitis Media

Abstract

Otitis media (OM) is a complex disease of multifactorial etiology with a strong genetic component as evidenced by heritability studies and previously identified rare and common variants that confer susceptibility to OM. Recent scientific and technological advancements have helped propel our understanding of OM in the genetic context, with numerous genetic loci and genes brought into focus. Many of these genes relate the immune system and craniofacial development to OM susceptibility. Findings have also highlighted the complexity of OM pathogenesis with the implication of gene–environment interactions and changes to the microbiota of the middle ear and nasopharynx due to genetic variants. Using the latest genetic tools, the identification of OM-pathogenic variants in diverse populations will further increase our knowledge of OM pathophysiology, which can then be used to optimize prevention and treatment of OM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swanson JA, Hoecker JL. Concise review for primary-care physicians. Mayo Clin Proc. 1996;71:179–83.

    Article  PubMed  Google Scholar 

  2. Neto JFL, Hemb L, Silva DB, et al. Systematic literature review of modifiable risk factors for recurrent acute otitis media in childhood. J Pediatr. 2006;82:87–96. http://www.jped.com.br/conteudo/Ing_resumo.asp?varArtigo=1453&cod=&idSecao=3.

    Article  Google Scholar 

  3. Uhari M, Mäntysaari K, Niemelä M. A meta-analytic review of the risk factors for acute otitis media. Clin Infect Dis. 1996;22:1079–83.

    Article  PubMed  Google Scholar 

  4. Hudson HM, Rockett IR. An environmental and demographic analysis of otitis media in rural Australian aborigines. Int J Epidemiol. 1984;13:73–82.

    Article  PubMed  Google Scholar 

  5. Daly KA, Hoffman HJ, Kvaerner KJ, Kvestad E, Casselbrant ML, Homoe P, et al. Epidemiology, natural history, and risk factors: panel report from the Ninth International Research Conference on Otitis Media. Int J Pediatr Otorhinolaryngol. 2010;74:231–40.

    Article  PubMed  Google Scholar 

  6. Gunasekera H, Haysom L, Morris P, Craig J. The global burden of childhood otitis media and hearing impairment: a Systematic review. Pediatrics. 2008;121:S107. https://doi.org/10.1542/peds.2007-2022QQ.

    Article  Google Scholar 

  7. Santos-Cortez RLP, Reyes-Quintos MRT, Tantoco MLC, Abbe I, Llanes EGV, Ajami NJ, et al. Genetic and environmental determinants of otitis media in an indigenous Filipino population. Otolaryngol Head Neck Surg. 2016;155:856–62. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5093071/.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Austeng ME, Akre H, Øverland B, Abdelnoor M, Falkenberg E-S, Kværner KJ. Otitis media with effusion in children with in Down syndrome. Int J Pediatr Otorhinolaryngol. 2013;77:1329–32. https://linkinghub.elsevier.com/retrieve/pii/S0165587613002644.

    Article  PubMed  Google Scholar 

  9. Bois E, Nassar M, Zenaty D, Léger J, Van Den Abbeele T, Teissier N. Otologic disorders in Turner syndrome. Eur Ann Otorhinolaryngol Head Neck Dis. 2018;135:21–4. https://linkinghub.elsevier.com/retrieve/pii/S1879729617301291.

    Article  PubMed  Google Scholar 

  10. Ram G, Chinen J. Infections and immunodeficiency in Down syndrome: immunodeficiency in Down syndrome. Clin Exp Immunol. 2011;164:9–16. https://doi.org/10.1111/j.1365-2249.2011.04335.x.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chung H, Green PHR, Wang TC, Kong X-F. Interferon-driven immune dysregulation in Down syndrome: a review of the evidence. J Inflamm Res. 2021;14:5187–200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504936/.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kong AM, Hurley D, Evans KA, Brixner D, Csoboth C, Visootsak J. A retrospective, longitudinal, claims-based comparison of concomitant diagnoses between individuals with and without Down syndrome. J Manag Care Spec Pharm. 2017;23:761–70. https://doi.org/10.18553/jmcp.2017.23.7.761.

    Article  PubMed  Google Scholar 

  13. Sullivan KD, Evans D, Pandey A, Hraha TH, Smith KP, Markham N, et al. Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation. Sci Rep. 2017;7:14818.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kong X-F, Worley L, Rinchai D, Bondet V, Jithesh PV, Goulet M, et al. Three copies of four interferon receptor genes underlie a mild type I interferonopathy in Down syndrome. J Clin Immunol. 2020;40:807–19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418179/.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hüls A, Costa ACS, Dierssen M, Baksh RA, Bargagna S, Baumer NT, et al. Medical vulnerability of individuals with Down syndrome to severe COVID-19–data from the Trisomy 21 Research Society and the UK ISARIC4C survey. EClinicalMedicine. 2021;33:100769. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897934/.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nogaki T, Paparella MM, Cureoglu S. A structural analysis of tympanic compartments of the middle ear in patients with Down’s syndrome: a temporal bone study. Otol Neurotol. 2020;41:1149–57.

    Article  PubMed  Google Scholar 

  17. Omar M, McCoy JL, McCormick AA, Vellody K, Chi DH. Repeat tympanostomy tubes in children with Down syndrome. Int J Pediatr Otorhinolaryngol. 2021;148:110811.

    Article  PubMed  Google Scholar 

  18. Ghadersohi S, Ida JB, Bhushan B, Billings KR. Outcomes of tympanoplasty in children with Down syndrome. Int J Pediatr Otorhinolaryngol. 2017;103:36–40.

    Article  PubMed  Google Scholar 

  19. Kreicher KL, Weir FW, Nguyen SA, Meyer TA. Characteristics and progression of hearing loss in children with Down syndrome. J Pediatr. 2018;193:27–33.e2.

    Article  PubMed  Google Scholar 

  20. Mock, Markert UR, Vogelsang H, Jäger L. Selective T-cell deficiency in Turner’s syndrome. J Investig Allergol Clin Immunol. 2000;10:312–3.

    PubMed  Google Scholar 

  21. Cacciari E, Masi M, Fantini MP, Licastro F, Cicognani A, Pirazzoli P, et al. Serum immunoglobulins and lymphocyte subpopulations derangement in Turner’s syndrome. J Immunogenet. 1981;8:337–44.

    Article  PubMed  Google Scholar 

  22. Makishima T, King K, Brewer CC, Zalewski CK, Butman J, Bakalov VK, et al. Otolaryngologic markers for the early diagnosis of Turner syndrome. Int J Pediatr Otorhinolaryngol. 2009;73:1564–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757481/.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stenberg AE, Nylén O, Windh M, Hultcrantz M. Otological problems in children with Turner’s syndrome. Hear Res. 1998;124:85–90.

    Article  PubMed  Google Scholar 

  24. Balding DJ, et al., editors. Handbook of statistical genetics, vol. 1 and 2. Somerset, NJ: John Wiley and Sons Ltd; 2003. https://www.biblio.com/book/handbook-statistical-genetics-volumes-1-2/d/1465841857.

    Google Scholar 

  25. Kvaerner KJ, Tambs K, Harris JR, Magnus P. Distribution and heritability of recurrent ear infections. Ann Otol Rhinol Laryngol. 1997;106:624–32.

    Article  PubMed  Google Scholar 

  26. Kvestad E, Kvaerner KJ, Røysamb E, Tambs K, Harris JR, Magnus P. Otitis media: genetic factors and sex differences. Twin Res. 2004;7:239–44.

    Article  PubMed  Google Scholar 

  27. Casselbrant ML, Mandel EM, Fall PA, Rockette HE, Kurs-Lasky M, Bluestone CD, et al. The heritability of otitis media: a twin and triplet study. JAMA. 1999;282:2125–30.

    Article  PubMed  Google Scholar 

  28. Casselbrant ML, Mandel EM, Rockette HE, Kurs-Lasky M, Fall PA, Bluestone CD, et al. The genetic component of middle ear disease in the first 5 years of life. Arch Otolaryngol Head Neck Surg. 2004;130:273–8.

    Article  PubMed  Google Scholar 

  29. Rovers M, Haggard M, Gannon M, Koeppen-Schomerus G, Plomin R. Heritability of symptom domains in otitis media: a longitudinal study of 1,373 twin pairs. Am J Epidemiol. 2002;155:958–64.

    Article  PubMed  Google Scholar 

  30. Hafrén L. Genetic background and the risk of otitis media. Int J Pediatr Otorhinolaryngol. 2012;76(1):41–4.

    Article  PubMed  Google Scholar 

  31. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.

    Article  PubMed  Google Scholar 

  32. Daly KA, Brown WM, Segade F, Bowden DW, Keats BJ, Lindgren BR, et al. Chronic and recurrent otitis media: a genome scan for susceptibility loci. Am J Hum Genet. 2004;75:988–97.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rye MS, Scaman ESH, Thornton RB, Vijayasekaran S, Coates HL, Francis RW, et al. Genetic and functional evidence for a locus controlling otitis media at chromosome 10q26.3. BMC Med Genet. 2014;15:18.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lanier LL. NK cell receptors. Annu Rev Immunol. 1998;16:359–93.

    Article  PubMed  Google Scholar 

  35. Chen W-M, Allen EK, Mychaleckyj JC, Chen F, Hou X, Rich SS, et al. Significant linkage at chromosome 19q for otitis media with effusion and/or recurrent otitis media (COME/ROM). BMC Med Genet. 2011;12:124.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mataki C, Murakami T, Umetani M, Wada Y, Ishii M, Tsutsumi S, et al. A novel zinc finger protein mRNA in human umbilical vein endothelial cells is profoundly induced by tumor necrosis factor alpha. J Atheroscler Thromb. 2000;7:97–103.

    Article  PubMed  Google Scholar 

  37. Sabater L, Ashhab Y, Caro P, Kolkowski EC, Pujol-Borrell R, Domínguez O. Identification of a KRAB-containing zinc finger protein, ZNF304, by AU-motif-directed display method and initial characterization in lymphocyte activation. Biochem Biophys Res Commun. 2002;293:1066–72.

    Article  PubMed  Google Scholar 

  38. André P, Biassoni R, Colonna M, Cosman D, Lanier LL, Long EO, et al. New nomenclature for MHC receptors. Nat Immunol. 2001;2:661.

    Article  PubMed  Google Scholar 

  39. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32.

    Article  PubMed  Google Scholar 

  40. Nyren-Erickson EK, Jones JM, Srivastava DK, Mallik S. A disintegrin and metalloproteinase-12 (ADAM12): function, roles in disease progression, and clinical implications. Biochim Biophys Acta. 2013;1830:4445–55.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cho J-G, Woo J-S, Lee H-M, Jung HH, Hwang S-J, Chae S. Effects of cigarette smoking on mucin production in human middle ear epithelial cells. Int J Pediatr Otorhinolaryngol. 2009;73:1447–51.

    Article  PubMed  Google Scholar 

  42. Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 1996;16:1770–6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Batut J, Schmierer B, Cao J, Raftery LA, Hill CS, Howell M. Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signalling. Dev Camb Engl. 2008;135:2927–37.

    Google Scholar 

  44. Floros J, DiAngelo S, Koptides M, Karinch AM, Rogan PK, Nielsen H, et al. Human SP-A locus: allele frequencies and linkage disequilibrium between the two surfactant protein A genes. Am J Respir Cell Mol Biol. 1996;15:489–98.

    Article  PubMed  Google Scholar 

  45. Rämet M, Löfgren J, Alho O-P, Hallman M. Surfactant protein-A gene locus associated with recurrent otitis media. J Pediatr. 2001;138:266–8. https://linkinghub.elsevier.com/retrieve/pii/S0022347601576544.

    Article  PubMed  Google Scholar 

  46. Pettigrew MM, Gent JF, Zhu Y, Triche EW, Belanger KD, Holford TR, et al. Association of surfactant protein A polymorphisms with otitis media in infants at risk for asthma. BMC Med Genet. 2006;7:68.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Abdel-Razek O, Ni L, Yang F, Wang G. Innate immunity of surfactant protein A in experimental otitis media. Innate Immun. 2019;25:391–400.

    Article  PubMed  PubMed Central  Google Scholar 

  48. McNeely TB, Coonrod JD. Aggregation and opsonization of type A but not type B Hemophilus influenzae by surfactant protein A. Am J Respir Cell Mol Biol. 1994;11:114–22.

    Article  PubMed  Google Scholar 

  49. Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds D. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48:709–17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207801/.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mortensen EH, Lildholdt T, Gammelgård NP, Christensen PH. Distribution of ABO blood groups in secretory otitis media and cholesteatoma. Clin Otolaryngol Allied Sci. 1983;8:263–5.

    Article  PubMed  Google Scholar 

  51. Apostolopoulos K, Labropoulou E, Konstantinos B, Rhageed S, Ferekidis E. Blood group in otitis media with effusion. ORL J Otorhinolaryngol Relat Spec. 2002;64:433–5.

    Article  PubMed  Google Scholar 

  52. Wiesen BM, Hafrén L, Einarsdottir E, Kere J, Mattila PS, Santos-Cortez RLP. ABO genotype and blood type are associated with otitis media. Genet Test Mol Biomark. 2019;23:823–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6857544/.

    Article  Google Scholar 

  53. Tian C, Hromatka BS, Kiefer AK, Eriksson N, Noble SM, Tung JY, et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat Commun. 2017;8:599.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kalm O, Johnson U, Prellner K. HLA frequency in patients with chronic secretory otitis media. Int J Pediatr Otorhinolaryngol. 1994;30:151–7.

    Article  PubMed  Google Scholar 

  55. Kalm O, Johnson U, Prellner K, Ninn K. HLA frequency in patients with recurrent acute otitis media. Arch Otolaryngol Head Neck Surg. 1991;117:1296–9.

    Article  PubMed  Google Scholar 

  56. Kalm O, Johnson U, Prellner K, Ninn K. HLA antigens and recurrent acute otitis media. Acta Otolaryngol Suppl. 1992;492:107–9.

    Article  PubMed  Google Scholar 

  57. Rye MS, Warrington NM, Scaman ESH, Vijayasekaran S, Coates HL, Anderson D, et al. Genome-wide association study to identify the genetic determinants of otitis media susceptibility in childhood. PLoS One. 2012;7:e48215.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Allen EK, Manichaikul A, Chen W-M, Rich SS, Daly KA, Sale MM. Evaluation of replication of variants associated with genetic risk of otitis media. PLoS One. 2014;9:e104212.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Allen EK, Chen W-M, Weeks DE, Chen F, Hou X, Mattos JL, et al. A genome-wide association study of chronic otitis media with effusion and recurrent otitis media identifies a novel susceptibility locus on chromosome 2. J Assoc Res Otolaryngol. 2013;14:791–800. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825021/.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bochkov YA, Palmenberg AC, Lee W-M, Rathe JA, Amineva SP, Sun X, et al. Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med. 2011;17:627–32.

    Article  PubMed  PubMed Central  Google Scholar 

  61. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article  Google Scholar 

  62. Thijssen PE, Ito Y, Grillo G, Wang J, Velasco G, Nitta H, et al. Mutations in CDCA7 and HELLS cause immunodeficiency–centromeric instability–facial anomalies syndrome. Nat Commun. 2015;6:7870. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519989/.

    Article  PubMed  Google Scholar 

  63. Ovádi J, Orosz F. An unstructured protein with destructive potential: TPPP/p25 in neurodegeneration. BioEssays News Rev Mol Cell Dev Biol. 2009;31:676–86.

    Article  Google Scholar 

  64. Hsu S-HC, Zhang X, Yu C, Li ZJ, Wunder JS, Hui C-C, et al. Kif7 promotes hedgehog signaling in growth plate chondrocytes by restricting the inhibitory function of Sufu. Dev Camb Engl. 2011;138:3791–801.

    Google Scholar 

  65. Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG. Treslin collaborates with TopBP1 in triggering the initiation of DNA replication. Cell. 2010;140:349–59.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Einarsdottir E, Hafrén L, Leinonen E, Bhutta MF, Kentala E, Kere J, et al. Genome-wide association analysis reveals variants on chromosome 19 that contribute to childhood risk of chronic otitis media with effusion. Sci Rep. 2016;6:33240.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hammarén-Malmi S, Tarkkanen J, Mattila PS. Analysis of risk factors for childhood persistent middle ear effusion. Acta Otolaryngol (Stockh). 2005;125:1051–4.

    Article  PubMed  Google Scholar 

  68. Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev. 2015;264:74–87.

    Article  PubMed  Google Scholar 

  69. Sun N, Li C, Li X-F, Deng Y-Q, Jiang T, Zhang N-N, et al. Type-I interferon-inducible SERTAD3 inhibits influenza A virus replication by blocking the assembly of viral RNA polymerase complex. Cell Rep. 2020;33:108342.

    Article  PubMed  Google Scholar 

  70. van Ingen G, Li J, Goedegebure A, Pandey R, Li YR, March ME, et al. Genome-wide association study for acute otitis media in children identifies FNDC1 as disease contributing gene. Nat Commun. 2016;7:12792.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bønnelykke K, Sleiman P, Nielsen K, Kreiner-Møller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46:51–5.

    Article  PubMed  Google Scholar 

  72. Eriksson P-O, Li J, Ny T, Hellström S. Spontaneous development of otitis media in plasminogen-deficient mice. Int J Med Microbiol. 2006;296:501–9.

    Article  PubMed  Google Scholar 

  73. Jolley A, Corbett M, McGregor L, Waters W, Brown S, Nicholl J, et al. De novo intragenic deletion of the autism susceptibility candidate 2 (AUTS2) gene in a patient with developmental delay: a case report and literature review. Am J Med Genet A. 2013;161A:1508–12.

    Article  PubMed  Google Scholar 

  74. Santos-Cortez RLP, Chiong CM, Frank DN, Ryan AF, Giese APJ, Bootpetch Roberts T, et al. FUT2 variants confer susceptibility to familial otitis media. Am J Hum Genet. 2018;103:679–90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217759/.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Elling CL, Scholes MA, Streubel S-O, Larson ED, Wine TM, Bootpetch TC, et al. The FUT2 variant c.461G>A (p.Trp154*) is associated with differentially expressed genes and nasopharyngeal microbiota shifts in patients with otitis media. Front Cell Infect Microbiol. 2021;11:798246.

    Article  PubMed  Google Scholar 

  76. Tian C, Harris BS, Johnson KR. Ectopic mineralization and conductive hearing loss in Enpp1asj mutant mice, a new model for otitis media and tympanosclerosis. PLoS One. 2016;11:e0168159.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hirsch SD, Elling CL, Bootpetch TC, Scholes MA, Hafrén L, Streubel S-O, et al. The role of CDHR3 in susceptibility to otitis media. J Mol Med. 2021;99:1571–83. https://doi.org/10.1007/s00109-021-02118-7.

    Article  PubMed  Google Scholar 

  78. Everman JL, Sajuthi S, Saef B, Rios C, Stoner AM, Numata M, et al. Functional genomics of CDHR3 confirms its role in HRV-C infection and childhood asthma exacerbations. J Allergy Clin Immunol. 2019;144:962–71.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Xia J, Benner MJ, Hancock REW. NetworkAnalyst—integrative approaches for protein–protein interaction network analysis and visual exploration. Nucleic Acids Res. 2014;42:W167–74. https://doi.org/10.1093/nar/gku443.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Xia J, Gill EE, Hancock REW. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protoc. 2015;10:823–44.

    Article  PubMed  Google Scholar 

  81. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47:W234–41.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Larson ED, Magno JPM, Steritz MJ, Llanes EGV, Cardwell J, Pedro M, et al. A2ML1 and otitis media: novel variants, differential expression and relevant pathways. Hum Mutat. 2019;40:1156–71. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711784/.

    PubMed  PubMed Central  Google Scholar 

  83. Santos-Cortez RLP, Chiong CM, Reyes-Quintos MRT, Tantoco MLC, Wang X, Acharya A, et al. Rare A2ML1 variants confer susceptibility to otitis media. Nat Genet. 2015;47:917–20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528370/.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Frank DN, Giese APJ, Hafren L, Bootpetch TC, Yarza TKL, Steritz MJ, et al. Otitis media susceptibility and shifts in the head and neck microbiome due to SPINK5 variants. J Med Genet. 2021;58:442–52.

    Article  PubMed  Google Scholar 

  85. Bondestam M, Foucard T, Gebre-Medhin M. Serum albumin, retinol-binding protein, thyroxin-binding prealbumin and acute phase reactants as indicators of undernutrition in children with undue susceptibility to acute infections. Acta Paediatr Scand. 1988;77:94–8.

    Article  PubMed  Google Scholar 

  86. Santos-Cortez RLP, Hutchinson DS, Ajami NJ, Reyes-Quintos MRT, Tantoco MLC, Labra PJ, et al. Middle ear microbiome differences in indigenous Filipinos with chronic otitis media due to a duplication in the A2ML1 gene. Infect Dis Poverty. 2016;5:97. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088646/.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ravn V, Dabelsteen E. Tissue distribution of histo-blood group antigens. Acta Pathol Microbiol Immunol Scand. 2000;108:1–28.

    Article  Google Scholar 

  88. Jamieson SE, Fakiola M, Tang D, Scaman E, Syn G, Francis RW, et al. Common and rare genetic variants that could contribute to severe otitis media in an Australian Aboriginal Population. Clin Infect Dis. 2021;73:1860–70. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8599203/.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Barnes PJ. Corticosteroid effects on cell signalling. Eur Respir J. 2006;27:413–26.

    Article  PubMed  Google Scholar 

  90. Yue MM, Lv K, Meredith SC, Martindale JL, Gorospe M, Schuger L. Novel RNA-binding protein P311 binds eukaryotic translation initiation factor 3 subunit b (eIF3b) to promote translation of transforming growth factor β1-3 (TGF-β1-3). J Biol Chem. 2014;289:33971–83.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mulligan CJ, D’Errico NC, Stees J, Hughes DA. Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics. 2012;7:853–7.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lewis CR, Breitenstein RS, Henderson A, Sowards HA, Piras IS, Huentelman MJ, et al. Harsh parenting predicts novel HPA receptor gene methylation and NR3C1 methylation predicts cortisol daily slope in middle childhood. Cell Mol Neurobiol. 2021;41:783–93.

    Article  PubMed  Google Scholar 

  93. Deshpande NP, Riordan SM, Castaño-Rodríguez N, Wilkins MR, Kaakoush NO. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome. 2018;6:227.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Santos-Cortez RLP, Bhutta MF, Earl JP, Hafrén L, Jennings M, Mell JC, et al. Panel 3: Genomics, precision medicine and targeted therapies. Int J Pediatr Otorhinolaryngol. 2020;130:109835. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7155947/.

    Article  PubMed  Google Scholar 

  95. Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A. Mouse ENU mutagenesis. Hum Mol Genet. 1999;8:1955–63.

    Article  PubMed  Google Scholar 

  96. Ringwald M, Iyer V, Mason JC, Stone KR, Tadepally HD, Kadin JA, et al. The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucleic Acids Res. 2011;39:D849–55. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013768/.

    Article  PubMed  Google Scholar 

  97. Knockout Mouse Phenotyping. 2013. https://commonfund.nih.gov/komp2.

  98. Ryan AF, Ebmeyer J, Furukawa M, Pak K, Melhus A, Wasserman SI, et al. Mouse models of induced otitis media. Brain Res. 2006;1091:3–8. https://linkinghub.elsevier.com/retrieve/pii/S0006899306003799.

    Article  PubMed  Google Scholar 

  99. Stol K, van Selm S, van den Berg S, Bootsma HJ, Blokx WAM, Graamans K, et al. Development of a non-invasive murine infection model for acute otitis media. Microbiology. 2009;155:4135–44.

    Article  PubMed  Google Scholar 

  100. Brehm A, Kouzarides T. Retinoblastoma protein meets chromatin. Trends Biochem Sci. 1999;24:142–5.

    Article  PubMed  Google Scholar 

  101. Humbert PO, Rogers C, Ganiatsas S, Landsberg RL, Trimarchi JM, Dandapani S, et al. E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol Cell. 2000;6:281–91.

    Article  PubMed  Google Scholar 

  102. Ohto H, Kamada S, Tago K, Tominaga SI, Ozaki H, Sato S, et al. Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol. 1999;19:6815–24.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rayapureddi JP, Kattamuri C, Steinmetz BD, Frankfort BJ, Ostrin EJ, Mardon G, et al. Eyes absent represents a class of protein tyrosine phosphatases. Nature. 2003;426:295–8.

    Article  PubMed  Google Scholar 

  104. Tootle TL, Silver SJ, Davies EL, Newman V, Latek RR, Mills IA, et al. The transcription factor Eyes absent is a protein tyrosine phosphatase. Nature. 2003;426:299–302.

    Article  PubMed  Google Scholar 

  105. Krug P, Morinière V, Marlin S, Koubi V, Gabriel HD, Colin E, et al. Mutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic role of SIX5 mutations. Hum Mutat. 2011;32:183–90. https://doi.org/10.1002/humu.21402.

    Article  PubMed  Google Scholar 

  106. Pfister M, Tóth T, Thiele H, Haack B, Blin N, Zenner H-P, et al. A 4-bp insertion in the eya-homologous region (eyaHR) of EYA4 causes hearing impairment in a Hungarian family linked to DFNA10. Mol Med Camb Mass. 2002;8:607–11.

    PubMed  PubMed Central  Google Scholar 

  107. Depreux FFS, Darrow K, Conner DA, Eavey RD, Liberman MC, Seidman CE, et al. Eya4-deficient mice are a model for heritable otitis media. J Clin Invest. 2008;118:651–8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2213371/.

    PubMed  PubMed Central  Google Scholar 

  108. Carpinelli MR, Kruse EA, Arhatari BD, Debrincat MA, Ogier JM, Bories J-C, et al. Mice haploinsufficient for Ets1 and Fli1 display middle ear abnormalities and model aspects of Jacobsen syndrome. Am J Pathol. 2015;185:1867–76.

    Article  PubMed  Google Scholar 

  109. Jones C, Slijepcevic P, Marsh S, Baker E, Langdon WY, Richards RI, et al. Physical linkage of the fragile site FRA11B and a Jacobsen syndrome chromosome deletion breakpoint in 11q23.3. Hum Mol Genet. 1994;3:2123–30.

    Article  PubMed  Google Scholar 

  110. Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem. 2011;80:437–71.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kola I, Brookes S, Green AR, Garber R, Tymms M, Papas TS, et al. The Ets1 transcription factor is widely expressed during murine embryo development and is associated with mesodermal cells involved in morphogenetic processes such as organ formation. Proc Natl Acad Sci U S A. 1993;90:7588–92.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mélet F, Motro B, Rossi DJ, Zhang L, Bernstein A. Generation of a novel Fli-1 protein by gene targeting leads to a defect in thymus development and a delay in Friend virus-induced erythroleukemia. Mol Cell Biol. 1996;16:2708–18.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Crompton M, Purnell T, Tyrer HE, Parker A, Ball G, Hardisty-Hughes RE, et al. A mutation in Nischarin causes otitis media via LIMK1 and NF-κB pathways. PLoS Genet. 2017;13:e1006969.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hardisty RE, Erven A, Logan K, Morse S, Guionaud S, Sancho-Oliver S, et al. The deaf mouse mutant Jeff (Jf) is a single gene model of otitis media. J Assoc Res Otolaryngol. 2003;4:130–8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202714/.

    Article  PubMed  Google Scholar 

  115. Hardisty-Hughes RE, Tateossian H, Morse SA, Romero MR, Middleton A, Tymowska-Lalanne Z, et al. A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. Hum Mol Genet. 2006;15:3273–9. http://academic.oup.com/hmg/article/15/22/3273/713947/A-mutation-in-the-Fbox-gene-Fbxo11-causes-otitis.

    Article  PubMed  Google Scholar 

  116. Okabe Y, Sano T, Nagata S. Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature. 2009;460:520–4.

    Article  PubMed  Google Scholar 

  117. MacArthur CJ, Hefeneider SH, Kempton JB, Trune DR. C3H/HeJ mouse model for spontaneous chronic otitis media. Laryngoscope. 2006;116:1071–9.

    Article  PubMed  Google Scholar 

  118. Hirano T, Kodama S, Fujita K, Maeda K, Suzuki M. Role of Toll-like receptor 4 in innate immune responses in a mouse model of acute otitis media. FEMS Immunol Med Microbiol. 2007;49:75–83.

    Article  PubMed  Google Scholar 

  119. Leichtle A, Hernandez M, Pak K, Yamasaki K, Cheng C-F, Webster NJ, et al. TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media. Innate Immun. 2009;15:205–15.

    Article  PubMed  Google Scholar 

  120. Leichtle A, Hernandez M, Lee J, Pak K, Webster NJ, Wollenberg B, et al. The role of DNA sensing and innate immune receptor TLR9 in otitis media. Innate Immun. 2012;18:3–13.

    Article  PubMed  Google Scholar 

  121. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.

    Article  PubMed  Google Scholar 

  122. Fritz JH, Girardin SE. How Toll-like receptors and Nod-like receptors contribute to innate immunity in mammals. J Endotoxin Res. 2005;11:390–4. https://doi.org/10.1177/09680519050110060301.

    Article  PubMed  Google Scholar 

  123. Hernandez M, Leichtle A, Pak K, Ebmeyer J, Euteneuer S, Obonyo M, et al. Myeloid differentiation primary response gene 88 is required for the resolution of otitis media. J Infect Dis. 2008;198:1862–9.

    Article  PubMed  Google Scholar 

  124. Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19:24–32.

    Article  PubMed  Google Scholar 

  125. Gorovoy M, Han J, Pan H, Welch E, Neamu R, Jia Z, et al. LIM kinase 1 promotes endothelial barrier disruption and neutrophil infiltration in mouse lungs. Circ Res. 2009;105:549–56.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Rothwarf DM, Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE Signal Transduct Knowl Environ. 1999;1999:RE1.

    Google Scholar 

  127. Parkinson N, Hardisty-Hughes RE, Tateossian H, Tsai H-T, Brooker D, Morse S, et al. Mutation at the Evi1 locus in Junbo mice causes susceptibility to otitis media. PLoS Genet. 2006;2:e149.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Alliston T, Ko TC, Cao Y, Liang Y-Y, Feng X-H, Chang C, et al. Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1. J Biol Chem. 2005;280:24227–37.

    Article  PubMed  Google Scholar 

  129. Kurokawa M, Mitani K, Yamagata T, Takahashi T, Izutsu K, Ogawa S, et al. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J. 2000;19:2958–68.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Xu X, Woo C-H, Steere RR, Lee BC, Huang Y, Wu J, et al. EVI1 acts as an inducible negative feedback regulator of NF-κB by inhibiting p65 acetylation. J Immunol. 1950;2012(188):6371–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370108/.

    Google Scholar 

  131. Tzavlaki K, Moustakas A. TGF-β signaling. Biomol Ther. 2020;10:487. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175140/.

    Google Scholar 

  132. Massagué J, Chen YG. Controlling TGF-beta signaling. Genes Dev. 2000;14:627–44.

    Article  PubMed  Google Scholar 

  133. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.

    Article  PubMed  Google Scholar 

  134. Kouskoura T, Fragou N, Alexiou M, John N, Sommer L, Graf D, et al. The genetic basis of craniofacial and dental abnormalities. Schweiz Monatsschrift Zahnmed Rev Mens Suisse Odonto-Stomatol Riv Mens Svizzera Odontol E Stomatol. 2011;121:636–46.

    Google Scholar 

  135. Kipreos ET, Pagano M. The F-box protein family. Genome Biol. 2000;1:REVIEWS3002.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF, et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature. 2012;481:90–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3344385/.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tateossian H, Hardisty-Hughes RE, Morse S, Romero MR, Hilton H, Dean C, et al. Regulation of TGF-β signalling by Fbxo11, the gene mutated in the Jeff otitis media mouse mutant. PathoGenetics. 2009;2:5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714483/.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mitani K. Molecular mechanisms of leukemogenesis by AML1/EVI-1. Oncogene. 2004;23:4263–9.

    Article  PubMed  Google Scholar 

  139. Bertolino E, Reimund B, Wildt-Perinic D, Clerc RG. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem. 1995;270:31178–88.

    Article  PubMed  Google Scholar 

  140. Massagué J, Wotton D. New EMBO member’s review. EMBO J. 2000;19:1745–54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC302010/.

    PubMed  PubMed Central  Google Scholar 

  141. Tateossian H, Morse S, Parker A, Mburu P, Warr N, Acevedo-Arozena A, et al. Otitis media in the Tgif knockout mouse implicates TGFβ signalling in chronic middle ear inflammatory disease. Hum Mol Genet. 2013;22:2553–65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674796/.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yao W, Frie M, Pan J, Pak K, Webster N, Wasserman SI, et al. C-Jun N-terminal kinase (JNK) isoforms play differing roles in otitis media. BMC Immunol. 2014;15:46.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Azar A, Piccinelli C, Brown H, Headon D, Cheeseman M. Ectodysplasin signalling deficiency in mouse models of hypohidrotic ectodermal dysplasia leads to middle ear and nasal pathology. Hum Mol Genet. 2016;25:3564–77. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5179950/.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Li X, Xu L, Li J, Li B, Bai X, Strauss JF, et al. Otitis media in sperm-associated antigen 6 (Spag6)-deficient mice. PLoS One. 2014;9:e112879.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Konduru AS, Matsuyama S, Lee B-C, Komatsu K, Li J-D. Curcumin inhibits NTHi-induced MUC5AC mucin overproduction in otitis media via upregulation of MAPK phosphatase MKP-1. Int J Inflamm. 2017;2017:4525309.

    Article  Google Scholar 

  146. Mestas J, Hughes CCW. Of mice and not men: differences between mouse and human immunology. J Immunol Baltim Md 1950. 2004;172:2731–8.

    Google Scholar 

  147. Bartel DP. MicroRNA target recognition and regulatory functions. Cell. 2009;136:215–33. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794896/.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Doo JG, Kim YI, Shim HS, Kim DJ, Park JW, Dong SH, et al. Expression of C-type lectin receptor mRNA in otitis media with effusion and chronic otitis media with and without cholesteatoma. Auris Nasus Larynx. 2019;46:672–80. https://linkinghub.elsevier.com/retrieve/pii/S0385814618306680.

    Article  PubMed  Google Scholar 

  149. Jung SY, Kim SS, Kim YI, Kim H-S, Kim SH, Yeo SG. Expression of aquaporins mRNAs in patients with otitis media. Acta Otolaryngol (Stockh). 2018;138:701–7.

    Article  PubMed  Google Scholar 

  150. Kerschner JE, Tripathi S, Khampang P, Papsin BC. MUC5AC expression in human middle ear epithelium of patients with otitis media. Arch Otolaryngol Head Neck Surg. 2010;136:819–24.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Jin Shin D, Gan-Undram S, Jin Kim S, Joon Jun Y, Jung Im G, Hyun Jung H. Expression of β-defensins in the tubotympanum of experimental otitis media. Acta Otolaryngol (Stockh). 2006;126:1040–5. https://doi.org/10.1080/00016480600672626.

    Article  PubMed  Google Scholar 

  152. Trune DR, Kempton B, Hausman FA, Larrain BE, MacArthur CJ. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media. Hear Res. 2015;326:49–58. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492826/.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kang DW, Dong SH, Kim SH, Kim YI, Park DC, Yeo SG. Expression of endoplasmic reticulum stress-related mRNA in otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2019;121:109–13. https://linkinghub.elsevier.com/retrieve/pii/S0165587619301272.

    Article  PubMed  Google Scholar 

  154. Hernandez M, Leichtle A, Pak K, Webster NJ, Wasserman SI, Ryan AF. The transcriptome of a complete episode of acute otitis media. BMC Genomics. 2015;16:259.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ryan AF, Nasamran CA, Pak K, Draf C, Fisch KM, Webster N, et al. Single-cell transcriptomes reveal a complex cellular landscape in the middle ear and differential capacities for acute response to infection. Front Genet. 2020;11:358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7174727/.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Luo W, Yi H, Taylor J, Li J, Chi F, Todd NW, et al. Cilia distribution and polarity in the epithelial lining of the mouse middle ear cavity. Sci Rep. 2017;7:45870. http://www.nature.com/articles/srep45870.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Tucker AS, Dyer CJ, Romero JMF, Teshima THN, Fuchs JC, Thompson H. Mapping the distribution of stem/progenitor cells across the middle ear during homeostasis and inflammation. Development. 2017;145:dev.154393. https://doi.org/10.1242/dev.154393/264412/Mapping-the-distribution-of-stem-progenitor-cells.

    Article  Google Scholar 

  158. Mulay A, Chowdhury MMK, James CT, Bingle L, Bingle CD. The transcriptional landscape of the cultured murine middle ear epithelium in vitro. Biol Open. 2021;10:bio056564.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Stabenau KA, Zimmermann MT, Mathison A, Zeighami A, Samuels TL, Chun RH, et al. RNA sequencing and pathways analyses of middle ear epithelia from patients with otitis media. Laryngoscope. 2021;131:2590–7. https://doi.org/10.1002/lary.29551.

    Article  PubMed  Google Scholar 

  160. Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014;15:1–19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896928/.

    Article  PubMed  Google Scholar 

  161. Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci. 2019;20:6249. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941098/.

    Article  PubMed  PubMed Central  Google Scholar 

  162. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.

    Article  Google Scholar 

  163. Place RF, Li L-C, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A. 2008;105:1608–13.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Martin HC, Wani S, Steptoe AL, Krishnan K, Nones K, Nourbakhsh E, et al. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol. 2014;15:R51.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Zhang J, Zhou W, Liu Y, Liu T, Li C, Wang L. Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5′UTR of RUNX3. Oncol Lett. 2018;15:7215. https://doi.org/10.3892/ol.2018.8217.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 2013;8:e79467. https://doi.org/10.1371/journal.pone.0079467.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Song J-J, Kwon SK, Cho CG, Park S-W, Chae S-W. Microarray analysis of microRNA expression in LPS induced inflammation of human middle ear epithelial cells (HMEECs). Int J Pediatr Otorhinolaryngol. 2011;75:648–51. https://linkinghub.elsevier.com/retrieve/pii/S0165587611000668.

    Article  PubMed  Google Scholar 

  168. Samuels TL, Yan J, Khampang P, MacKinnon A, Hong W, Johnston N, et al. Association of microRNA 146 with middle ear hyperplasia in pediatric otitis media. Int J Pediatr Otorhinolaryngol. 2016;88:104–8.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Janas T, Janas MM, Sapoń K, Janas T. Mechanisms of RNA loading into exosomes. FEBS Lett. 2015;589:1391–8.

    Article  PubMed  Google Scholar 

  170. Val S, Jeong S, Poley M, Krueger A, Nino G, Brown K, et al. Purification and characterization of microRNAs within middle ear fluid exosomes: implication in otitis media pathophysiology. Pediatr Res. 2017;81:911–8. http://www.nature.com/articles/pr201725.

    Article  PubMed  PubMed Central  Google Scholar 

  171. O’Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol. 2011;11:163–75.

    Article  PubMed  Google Scholar 

  172. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78:838–48.

    Article  PubMed  Google Scholar 

  173. Moon S-K, Moon S-K, Park R, Moon S-K, Park R, Lee H-Y, et al. Spiral ligament fibrocytes release chemokines in response to otitis media pathogens. Acta Otolaryngol (Stockh). 2006;126:564–9. https://doi.org/10.1080/00016480500452525.

    Article  PubMed  Google Scholar 

  174. Watanabe T, Jono H, Han J, Lim DJ, Li J-D. Synergistic activation of NF-kappaB by nontypeable Haemophilus influenzae and tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 2004;101:3563–8.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Val S, Krueger A, Poley M, Cohen A, Brown K, Panigrahi A, et al. Nontypeable Haemophilus influenzae lysates increase heterogeneous nuclear ribonucleoprotein secretion and exosome release in human middle-ear epithelial cells. FASEB J. 2018;32:1855–67. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893168/.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Li H-G, Zhao L-H, Bao X-B, Sun P-C, Zhai B-P. Meta-analysis of the differentially expressed colorectal cancer-related microRNA expression profiles. Eur Rev Med Pharmacol Sci. 2014;18:2048–57.

    PubMed  Google Scholar 

  177. Pellatt DF, Stevens JR, Wolff RK, Mullany LE, Herrick JS, Samowitz W, et al. Expression profiles of miRNA subsets distinguish human colorectal carcinoma and normal colonic mucosa. Clin Transl Gastroenterol. 2016;7:e152. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822091/.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Lin J, Wang Y, Zou Y-Q, Chen X, Huang B, Liu J, et al. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol. 2016;37:15835.

    Article  Google Scholar 

  179. Bracken CP, Li X, Wright JA, Lawrence DM, Pillman KA, Salmanidis M, et al. Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J. 2014;33:2040–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195771/.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Inamura K, Ishikawa Y. MicroRNA in lung cancer: novel biomarkers and potential tools for treatment. J Clin Med. 2016;5:36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4810107/.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Adamczyk P, Narożna B, Szczepankiewicz A, Bręborowicz A, Pucher B, Kotowski M, et al. Decreased miRNA-320e correlates with allergy in children with otitis media with effusion. Auris Nasus Larynx. 2021;48:1061–6.

    Article  PubMed  Google Scholar 

  182. Gantier MP. The not-so-neutral role of microRNAs in neutrophil biology. J Leukoc Biol. 2013;94:575–83.

    Article  PubMed  Google Scholar 

  183. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;455:64–71.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 2013;9:e1003569.

    Article  PubMed  PubMed Central  Google Scholar 

  185. St Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification. Trends Genet. 2015;31:239–51.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun. 2014;5:5220.

    Article  PubMed  Google Scholar 

  187. Kleaveland B, Shi CY, Stefano J, Bartel DP. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell. 2018;174:350–362.e17.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Ahn J-H, Lee H-S, Lee J-S, Lee Y-S, Park J-L, Kim S-Y, et al. nc886 is induced by TGF-β and suppresses the microRNA pathway in ovarian cancer. Nat Commun. 2018;9:1166.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220:e202009045. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816648/.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hu Y, Dong H, Huang J, Huang J, Tao D, Huang C, et al. Long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) promotes the inflammation and apoptosis of otitis media with effusion through targeting microRNA (miR)-495 and activation of p38 MAPK signaling pathway. Bioengineered. 2021;12:8080–8.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kraatz J, Clair L, Rodriguez JL, West MA. Macrophage TNF secretion in endotoxin tolerance: role of SAPK, p38, and MAPK. J Surg Res. 1999;83:158–64.

    Article  PubMed  Google Scholar 

  192. Shames BD, Selzman CH, Pulido EJ, Meng X, Meldrum DR, McIntyre RC, et al. LPS-induced NF-kappaB activation and TNF-alpha release in human monocytes are protein tyrosine kinase dependent and protein kinase C independent. J Surg Res. 1999;83:69–74.

    Article  PubMed  Google Scholar 

  193. King NE, Zimmermann N, Pope SM, Fulkerson PC, Nikolaidis NM, Mishra A, et al. Expression and regulation of a disintegrin and metalloproteinase (ADAM) 8 in experimental asthma. Am J Respir Cell Mol Biol. 2004;31:257–65.

    Article  PubMed  Google Scholar 

  194. Knolle MD, Owen CA. ADAM8: a new therapeutic target for asthma. Expert Opin Ther Targets. 2009;13:523–40.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Yamashita M, Fukui H, Sugama K, Horio Y, Ito S, Mizuguchi H, et al. Expression cloning of a cDNA encoding the bovine histamine H1 receptor. Proc Natl Acad Sci U S A. 1991;88:11515–9.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Janssens S, Beyaert R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell. 2003;11:293–302.

    Article  PubMed  Google Scholar 

  197. Casselbrant ML, Mandel EM, Jung J, Ferrell RE, Tekely K, Szatkiewicz JP, et al. Otitis media: a genome-wide linkage scan with evidence of susceptibility loci within the 17q12 and 10q22.3 regions. BMC Med Genet. 2009;10:85.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Stove V, Van de Walle I, Naessens E, Coene E, Stove C, Plum J, et al. Human immunodeficiency virus Nef induces rapid internalization of the T-cell coreceptor CD8alphabeta. J Virol. 2005;79:11422–33.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Iino Y, Kakizaki K, Katano H, Saigusa H, Kanegasaki S. Eosinophil chemoattractants in the middle ear of patients with eosinophilic otitis media. Clin Exp Allergy. 2005;35:1370–6.

    Article  PubMed  Google Scholar 

  200. Ingham PW, McMahon AP. Hedgehog signalling: Kif7 is not that fishy after all. Curr Biol. 2009;19:R729–31.

    Article  PubMed  Google Scholar 

  201. Jia L, Landan G, Pomerantz M, Jaschek R, Herman P, Reich D, et al. Functional enhancers at the gene-poor 8q24 cancer-linked locus. PLoS Genet. 2009;5:e1000597.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH)—the National Institute on Deafness and Other Communication Disorders (NIDCD) via grants R01 DC015004 and R01 DC019642 (to RS-C). NKL was supported by the T32 DC012280 grant from NIH-NIDCD (to Sue C. Kinnamon and Herman A. Jenkins). The contents of this chapter are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regie Lyn P. Santos-Cortez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, N.K., Santos-Cortez, R.L.P. (2023). Genetics and Otitis Media. In: Goycoolea, M.V., Selaimen da Costa, S., de Souza, C., Paparella, M.M. (eds) Textbook of Otitis Media. Springer, Cham. https://doi.org/10.1007/978-3-031-40949-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40949-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40948-6

  • Online ISBN: 978-3-031-40949-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics