Skip to main content

Attribute Repair for Threat Prevention

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2023)

Abstract

We propose a model-based procedure for preventing security threats using formal models. We encode system models and threats as satisfiability modulo theory (SMT) formulas. This model allows us to ask security questions as satisfiability queries. We formulate threat prevention as an optimization problem over the same formulas. The outcome of our threat prevention procedure is a suggestion of model attribute repair that eliminates threats. We implement our approach using the state-of-the-art Z3 SMT solver and interface it with the threat analysis tool THREATGET. We demonstrate the value of our procedure in two case studies from automotive and smart home domains.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 956123 (FOCETA), No. 871385 (TEACHING) and from the program “ICT of the Future” of the Austrian Research Promotion Agency (FFG) and the Austrian Ministry for Transport, Innovation and Technology under grant agreements No. 867558 (project TRUSTED).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    THREATGET uses its own syntax and semantics to express threats [3]. We use instead predicate logic to facilitate the encoding of the forthcoming algorithms into SMT formulas. Our implementation contains an automated translation from THREATGET syntax to threat logic.

  2. 2.

    We ignore here a fourth possible verdict \(\mathop {\textrm{unknown}}\limits \) that can arise in practice and that happens if the solver is not able to reach a conclusion before it times out.

References

  1. Bjørner, N., Phan, A.: \(\nu \)z - maximal satisfaction with Z3. In: 6th International Symposium on Symbolic Computation in Software Science, SCSS 2014, Gammarth, La Marsa, Tunisia, December 2014, pp. 1–9. EasyChair (2014)

    Google Scholar 

  2. Bjørner, N., Phan, A., Fleckenstein, L.: \(\nu \)Z - an optimizing SMT solver. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. Lecture Notes in Computer Science, vol. 9035, pp. 194–199. Springer, London, UK (2015)

    Google Scholar 

  3. Christl, K., Tarrach, T.: The analysis approach of ThreatGet. CoRR, abs/2107.09986 (2021)

    Google Scholar 

  4. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_12

    Chapter  Google Scholar 

  5. Dillig, I., Dillig, T., McMillan, K.L., Aiken, A.: Minimum satisfying assignments for SMT. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 394–409. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_30

    Chapter  Google Scholar 

  6. Foreseeti AB. Foreseeti (2020). Online. Accessed 29 Nov 2020

    Google Scholar 

  7. Goodwin, M., Gadsden, J.: OWASP threat dragon (2020). Online. Accessed 29 Nov 2020

    Google Scholar 

  8. McRee, R.: Microsoft threat modeling tool 2014: identify & mitigate. ISSA J. 39, 42 (2014)

    Google Scholar 

  9. Mürling, M.W.: Security by design: new “THREATGET” tool tests cyber security in vehicles and systems (2021). Online Article

    Google Scholar 

  10. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_18

    Chapter  MATH  Google Scholar 

  11. Riener, H., Könighofer, R., Fey, G., Bloem, R.: SMT-based CPS parameter synthesis. In: Frehse, G., Althoff, M. (eds.) 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems, ARCH@CPSWeek 2016, Volume 43 of EPiC Series in Computing, Vienna, Austria, pp. 126–133. EasyChair (2016)

    Google Scholar 

  12. El Sadany, M., Schmittner, C., Kastner, W.: Assuring compliance with protection profiles with ThreatGet. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 62–73. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26250-1_5

    Chapter  Google Scholar 

  13. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories. J. Autom. Reason. 64(3), 423–460 (2018). https://doi.org/10.1007/s10817-018-09508-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Security Compass Ltd.: Security compass SD elements (2020). Accessed 29 Nov 2020

    Google Scholar 

  15. ThreatModeler Software, Inc.: ThreatModeler (2020). Online. Accessed 29 Nov 2020

    Google Scholar 

  16. Tutamantic Ltd.: Tutamen threat model automator (2020). Online. Accessed 29 Nov 2020

    Google Scholar 

  17. Was, J., Avhad, P., Coles, M., Ozmore, N., Shambhuni, R., Tarandach, I.: OWASP pytm (2020). Online. Accessed 29 Nov 2020

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Ničković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarrach, T., Ebrahimi, M., König, S., Schmittner, C., Bloem, R., Ničković, D. (2023). Attribute Repair for Threat Prevention. In: Guiochet, J., Tonetta, S., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2023. Lecture Notes in Computer Science, vol 14181. Springer, Cham. https://doi.org/10.1007/978-3-031-40923-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40923-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40922-6

  • Online ISBN: 978-3-031-40923-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics