Skip to main content

Examination of Bending Stress Superposition Effect on Martensite Transformation in Austenitic Stainless Steel 304

  • Conference paper
  • First Online:
Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity (ICTP 2023)

Abstract

Uniaxial tension is a universal material characterization experiment. However, studies have shown that increased formability can be achieved with simultaneous bending and unbending of the material. This so-called continuous bending under tension process is an example of bending stress superposition to a uniaxial tension process. In this research, experiments are conducted on stainless steel 304 to investigate the effects of bending stress superposition on the austenite to martensite phase transformation. Two vortex tubes are mounted to the carriage of the machine and used to decrease the temperature in a localized region of the specimen to evaluate two temperature conditions. The in-situ strain and temperature fields are captured using 3D digital image correlation and infrared cameras. The deformation induced \(\upalpha^{\prime}\)-martensite volume fraction is measured at regular intervals along the deformed gauge length using a Feritscope. The number of cycles that the rollers traverse the gauge length, corresponding to the strain level, is also varied to create five conditions. The deformed specimens revealed heterogeneous martensite transformation along the gauge length due to the non-uniform temperature fields observed for each test condition. Decreasing the temperature and increasing the number of cycles led to the highest amount of phase transformation for this bending-tension superposed process. These results provide insight on how stress superposition can be applied to vary the phase transformation in more complex manufacturing processes, such as incremental forming, which combines bending, tension, and shear deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martins, P.A.F., Bay, N., Skjoedt, M., Silva, M.B.: Theory of single point incremental forming. CIRP Ann. 57, 247–252 (2008). https://doi.org/10.1016/j.cirp.2008.03.047

    Article  Google Scholar 

  2. Allwood, J.M., Shouler, D.R., Tekkaya, A.E.: The increased forming limits of incremental sheet forming processes. Key Eng. Mater. 344, 621–628 (2007). https://doi.org/10.4028/www.scientific.net/KEM.344.621

    Article  Google Scholar 

  3. Tekkaya, A.E., Groche, P., Kinsey, B.L., Wang, Z.G.: Plasticity and future opportunities of stress superposition in metal forming. CIRP Ann. (under revision) (2023)

    Google Scholar 

  4. Feng, Z., Mamros, E.M., Ha, J., et al.: Modeling of plasticity-induced martensitic transformation to achieve hierarchical, heterogeneous, and tailored microstructures in stainless steels. CIRP J. Manuf. Sci. Technol. 33, 389–397 (2021). https://doi.org/10.1016/j.cirpj.2021.04.006

    Article  Google Scholar 

  5. Hadoush, A., Van den Boogaard, T., Huetink, J.: Stable incremental deformation of a strip to high strain. Int. J. Mach. Tool Manuf. 344(615), 620 (2007). https://doi.org/10.4028/www.scientific.net/KEM.344.615

    Article  Google Scholar 

  6. Peng, W., Ou, H.: Deformation mechanisms and fracture in tension under cyclic bending plus compression, single point and double-sided incremental sheet forming processes. Int. J. Mach. Tools 184, 103980 (2023). https://doi.org/10.1016/j.ijmachtools.2022.103980

    Article  Google Scholar 

  7. Roemer, T.J., Kinsey, B.L., Korkolis, Y.P.: Design of a continuous-bending-under-tension machine and initial experiments on Al-6022-T4. Am. Soc. Mech. Eng. Digit. Collect. (2015). https://doi.org/10.1115/MSEC2015-9440

    Article  Google Scholar 

  8. Barrett, T., Kinsey, B.L., Knezevic, M., Korkolis, Y.P.: Numerical and experimental investigation of formability enhancement during continuous-bending-under-tension (CBT) of AA6022-T4. Procedia Eng. 207, 1940–1945 (2017). https://doi.org/10.1016/j.proeng.2017.10.965

    Article  CAS  Google Scholar 

  9. Maaß, F., Hahn, M., Tekkaya, A.E.: Adjusting residual stresses by flexible stress superposition in incremental sheet metal forming. Arch. Appl. Mech. 91(8), 3489–3499 (2021). https://doi.org/10.1007/s00419-021-01929-x

    Article  Google Scholar 

  10. Zecevic, M., Knezevic, M.: Origins of improved elongation to fracture in cyclic bending under tension of AA6022-T4 sheets as revealed using crystal plasticity modeling. Mech. Mater. 177, 104546 (2023). https://doi.org/10.1016/j.mechmat.2022.104546

    Article  Google Scholar 

  11. Matukhno, N., Kljestan, N., Vogel, S.C., Knezevic, M.: Cyclic bending under tension of alloy AZ31 sheets: influence on elongation-to-fracture and strength. Mater. Sci. Eng. A 857, 144127 (2022). https://doi.org/10.1016/j.msea.2022.144127

    Article  CAS  Google Scholar 

  12. Poulin, C.M., Korkolis, Y.P., Kinsey, B.L., Knezevic, M.: Over five-times improved elongation-to-fracture of dual-phase 1180 steel by continuous-bending-under-tension. Mater. Des. 161, 95–105 (2019). https://doi.org/10.1016/j.matdes.2018.11.022

    Article  CAS  Google Scholar 

  13. Mamros, E.M., Bram Kuijer, M., Davarpanah, M.A., Baker, I., Kinsey, B.L.: The effect of temperature on the strain-induced austenite to martensite transformation in SS 316L during uniaxial tension. In: Daehn, G., Cao, J., Kinsey, B., Tekkaya, E., Vivek, A., Yoshida, Y. (eds.) Forming the Future. TMMMS, pp. 1853–1862. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75381-8_155

    Chapter  Google Scholar 

  14. Olson, G., Cohen, M.: Kinetics of strain-induced martensitic nucleation. Metall. Trans. A 6, 791–795 (1975). https://doi.org/10.1007/BF02672301

    Article  Google Scholar 

  15. Talonen, J., Nenonen, P., Pape, G., Hänninen, H.: Effect of strain rate on the strain-induced γ → α′-martensite transformation and mechanical properties of austenitic stainless steels. Metall. Mater. Trans. A 36, 421–432 (2005). https://doi.org/10.1007/s11661-005-0313-y

    Article  Google Scholar 

  16. Darzi, S., Adams, M.D., Roth, J.T., et al.: Manipulating martensite transformation of SS304L during double-sided incremental forming by varying temperature and deformation path. CIRP Ann. Manuf. Technol. (2023)

    Google Scholar 

  17. Beese, A.M., Mohr, D.: Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation. Acta Mater. 59, 2589–2600 (2011). https://doi.org/10.1016/j.actamat.2010.12.040

    Article  CAS  Google Scholar 

  18. Wang, Z., Beese, A.M.: Stress state-dependent mechanics of additively manufactured 304L stainless steel: Part 1 – characterization and modeling of the effect of stress state and texture on microstructural evolution. Mater. Sci. Eng. A 743, 811–823 (2019). https://doi.org/10.1016/j.msea.2018.11.094

    Article  CAS  Google Scholar 

  19. Neding, B., Tian, Y., Ko, J.Y.P., Hedström, P.: Correlating temperature-dependent stacking fault energy and in-situ bulk deformation behavior for a metastable austenitic stainless steel. Mater. Sci. Eng. A 832, 142403 (2022). https://doi.org/10.1016/j.msea.2021.142403

    Article  CAS  Google Scholar 

  20. Katajarinne, T., Kivivuori, S.: Strain induced martensite in incremental forming - formation, effect and control. MSF 773–774, 119–129 (2013). https://doi.org/10.4028/www.scientific.net/MSF.773-774.119

    Article  CAS  Google Scholar 

  21. Angel, T.: Formation of martensite in austenitic stainless steels, effect of deformation, temperature and composition. J. Iron Steel Inst. 177, 165–174 (1954)

    CAS  Google Scholar 

  22. Stringfellow, R.G., Parks, D.M., Olson, G.B.: A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metall. Mater. 40, 1703–1716 (1992). https://doi.org/10.1016/0956-7151(92)90114-T

    Article  CAS  Google Scholar 

  23. Young, C.-C.: Transformation toughening in phosphocarbide-strengthened austenitic steels. Massachusetts Institute of Technology (1988)

    Google Scholar 

  24. Tomita, Y., Iwamoto, T.: Constitutive modeling of trip steel and its application to the improvement of mechanical properties. Int. J. Mech. Sci. 37, 1295–1305 (1995). https://doi.org/10.1016/0020-7403(95)00039-Z

    Article  Google Scholar 

  25. Beese, A.M., Mohr, D.: Anisotropic plasticity model coupled with Lode angle dependent strain-induced transformation kinetics law. J. Mech. Phys. Solids 60, 1922–1940 (2012). https://doi.org/10.1016/j.jmps.2012.06.009

    Article  CAS  Google Scholar 

  26. Mamros, E.M., Mayer, S.M., Banerjee, D.K., et al.: Plastic anisotropy evolution of SS316L and modeling for novel cruciform specimen. Int. J. Mech. Sci. 234 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107663

  27. Roemer, T.: Experimental apparatus for continuous-bending-under-tension and experiments on A6022-T4. Master’s theses and capstones (2016)

    Google Scholar 

  28. Talonen, J., Aspegren, P., Hänninen, H.: Comparison of different methods for measuring strain induced martensite content in austenitic steels. Mater. Sci. Technol. 20, 1506–1512 (2004). https://doi.org/10.1179/026708304X4367

    Article  Google Scholar 

Download references

Acknowledgements

Support for the New Hampshire Center for Multiscale Modeling and Manufacturing of Biomaterials (NH BioMade) project is provided by the US National Science Foundation (NSF) EPSCoR award (#1757371). This research is also supported by the German Academic Exchange Service (DAAD) Research Internships in Science and Engineering (RISE) Worldwide. Special thanks to Dirk Hoffmann from IUL for his assistance with specimen preparation. The SEM/FIB used is managed by the University Instrumentation Center (UIC) at UNH and was purchased with funds awarded from the US National Science Foundation (NSF) (MRI Grant 1337897) with additional funds from UNH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjin Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mamros, E.M. et al. (2024). Examination of Bending Stress Superposition Effect on Martensite Transformation in Austenitic Stainless Steel 304. In: Mocellin, K., Bouchard, PO., Bigot, R., Balan, T. (eds) Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity. ICTP 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-40920-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40920-2_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40919-6

  • Online ISBN: 978-3-031-40920-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics