Skip to main content

Mung and Adzuki Bean Sprouts

  • Chapter
  • First Online:
Advances in Plant Sprouts

Abstract

In the last few years, a paradigm shift has been observed in the eating habits and food choices of the population. People are getting more concerned about their diet’s health impact and have started adapting simple food products rather than processed ones. Therefore, people include seed sprouts and products derived from sprouts in their daily diet. Moreover, mung and adzuki bean sprouts are of high nutritive value, and people in countries like China, Japan, India etc., have been consuming them for centuries, as in their traditional food products. The physicochemical changes during sprouting can reduce the antinutritional factors like phytic acid in beans; additionally, the adzuki bean sprouting process helps soften the outer layer. Therefore, the overall nutritive value of sprouted mung and adzuki beans is increased along with improved digestibility. However, careless handling during the sprouting process led to various microorganisms’ growth, increasing the risk of health hazards. Therefore, proper care and improved methods for sprouting will aid in producing high-quality mung and adzuki bean sprouts, which can be further utilized in the production of various traditional and new food product development with a superior nutritive profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamir, M., Ovissipour, M., Sablani, S. S., & Rasco, B. (2013). Predicting the quality of pasteurized vegetables using kinetic models: A review. International Journal of Food Science, 2013.

    Google Scholar 

  • Abdel-Rahman, E. S. A., El-Fishawy, F. A., El-Geddawy, M. A., Kurz, T., & El-Rify, M. N. (2007). The changes in the lipid composition of mung bean seeds as affected by processing methods. International Journal of Food Engineering, 3(5).

    Google Scholar 

  • Abellán, Á., Domínguez-Perles, R., Moreno, D. A., & García-Viguera, C. (2019). Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients, 11, 1–22.

    Article  Google Scholar 

  • Adsule, R. N., Kadam, S. S., Salunkhe, D. K., & Luh, B. S. (1986). Chemistry and technology of green gram (Vigna radiata [L.] Wilczek). Critical Reviews in Food Science & Nutrition, 25(1), 73–105.

    Article  CAS  Google Scholar 

  • Anisha, G. S., & Prema, P. (2008). Reduction of non-digestible oligosaccharides in horse gram and green gram flours using crude α-galactosidase from Streptomyces griseoloalbus. Food Chemistry, 106(3), 1175–1179.

    Article  CAS  Google Scholar 

  • Arumuganathan, K., & Earle, E. D. (1991). Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter, 9(3), 208–218.

    Article  CAS  Google Scholar 

  • Baenas, N., García-Viguera, C., & Moreno, D. A. (2014). Elicitation: a tool for enriching the bioactive composition of foods. Molecules, 19(9), 13541–13563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bains, K., Uppal, V., & Kaur, H. (2014). Optimization of germination time and heat treatments for enhanced availability of minerals from leguminous sprouts. Journal of Food Science and Technology, 51(5), 1016–1020. https://doi.org/10.1007/s13197-011-0582-y

    Article  CAS  PubMed  Google Scholar 

  • Barakoti, L., & Bains, K. (2007). Effect of household processing on the in vitro bioavailability of iron in mungbean (Vigna radiata). Food and Nutrition Bulletin, 28(1), 18–22.

    Article  PubMed  Google Scholar 

  • Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. (2019). Sprouted grains: A comprehensive review. Nutrients, 11(2), 421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatty, R. S. (1982). Albumin proteins of eight edible grain legume species. Electrophoretic patterns and amino acid composition. Journal of Agricultural and Food Chemistry, 30(3), 620–622.

    Article  CAS  PubMed  Google Scholar 

  • Biliaderis, C. G., Maurice, T. J., & Vose, J. R. (1980). Starch gelatinization phenomena studied by differential scanning calorimetry. Journal of Food Science, 45(6), 1669–1674.

    Article  Google Scholar 

  • Bolek, S. (2022). Effects of roasting on bioavailability and bioactivities of Vigna angularis and potential of coffee-like beverage. Journal of Food Science, 87(3), 911–918.

    Article  CAS  PubMed  Google Scholar 

  • Bravo, L., Siddhuraju, P., & Saura-Calixto, F. (1999). Composition of underexploited Indian pulses. Comparison with common legumes. Food Chemistry, 64(2), 185–192.

    Article  CAS  Google Scholar 

  • Bremer, P. J., & Fielding, T. (2003). The safety of seed and bean sprouts: risks and solutions. Food New Zealand, 3(3), 33–40.

    Google Scholar 

  • Cavanagh, A. K. (1980). A review of some aspects of the germination of Acacias. Proceedings of the Royal Society of Victoria, 91, 161–180.

    Google Scholar 

  • Chen, T. H., Gusta, L. V., Tjahjadi, C., & Breene, W. M. (1984). Electrophoretic characterization of adzuki bean (Vigna angularis) seed proteins. Journal of Agricultural and Food Chemistry, 32(2), 396–399.

    Article  CAS  Google Scholar 

  • Chen, H., Liu, X., Chen, H. M., & Liu, X. H. (2001). Inheritance of seed color and lustre in mungbean (Vigna radiata). Hunan Agricultural Science & Technology, 2, 8–12.

    Google Scholar 

  • Chhabra, A. K., Singh, V. P., & Kharb, R. P. S. (1990). Multifactor inheritance of seedcoat colour in greengram (Vigna Radiata (L.) Wilczek.). Euphytica, 47(2), 153–158.

    Article  Google Scholar 

  • Chiu, K. Y. (2015). Ultrasonication-enhanced microbial safety of sprouts produced from selected crop species. Journal of Applied Botany and Food Quality, 88, 120–126.

    Google Scholar 

  • Chiu, K. Y. (2021). Changes in microstructure, germination, sprout growth, phytochemical and microbial quality of ultrasonication treated adzuki bean seeds. Agronomy, 11(6), 1093.

    Article  CAS  Google Scholar 

  • Cortez-Vega, W. R., Becerra-Prado, A. M., Soares, J. M., & Fonseca, G. G. (2008). Effect of L-ascorbic acid and sodium metabisulfite in the inhibition of the enzymatic browning of minimally processed apple. International Journal of Agricultural Research, 3(3), 196–201.

    Article  CAS  Google Scholar 

  • Dahiya, P. K., Linnemann, A. R., Van Boekel, M. A. J. S., Khetarpaul, N., Grewal, R. B., & Nout, M. J. R. (2015). Mung bean: Technological and nutritional potential. Critical Reviews in Food Science and Nutrition, 55(5), 670–688.

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira, A. P., & Naozuka, J. (2017). Effects of iron enrichment of adzuki bean (Vigna angularis) sprouts on elemental translocation, concentrations of proteins, distribution of Fe-metalloproteins, and Fe bioaccessibility. Journal of the Brazilian Chemical Society, 28(10), 1937–1946.

    Google Scholar 

  • El-Adawy, T. A., Rahma, E. H., El-Bedawey, A. A., & El-Beltagy, A. E. (2003). Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods for Human Nutrition, 58(3), 1–13.

    Article  Google Scholar 

  • European Union. (2013). Commission Implementing Regulation (EU) no 208/2013 of 11 March 2013 on traceability requirements for sprouts and seeds intended for the production of sprouts. The Official Journal of the European Union, 56, 16–18.

    Google Scholar 

  • Feng, P. (1997). A summary of background information and foodborne illness associated with the consumption of sprouts (pp. 96–99). Center for Food Safety and Applied Nutrition.

    Google Scholar 

  • Finnie, S., Brovelli, V., & Nelson, D. (2019). Sprouted grains as a food ingredient. In Sprouted grains (pp. 113–142). AACC International PPress.

    Chapter  Google Scholar 

  • Fordham, J. R., Wells, C. E., & Chen, L. H. (1975). Sprouting of seeds and nutrient composition of seeds and sprouts. Journal of Food Science, 40(3), 552–556.

    Article  CAS  Google Scholar 

  • Gan, R. Y., Wang, M. F., Lui, W. Y., Wu, K., & Corke, H. (2016). Dynamic changes in phytochemical composition and antioxidant capacity in green and black mung bean (Vigna radiata) sprouts. International Journal of Food Science & Technology, 51, 2090–2098. https://doi.org/10.1111/ijfs.1318535

    Article  CAS  Google Scholar 

  • Gan, R.-Y., Lui, W.-Y., Wu, K., Chan, C.-L., Dai, S.-H., Sui, Z.-Q., & Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science & Technology, 59, 1–14. https://doi.org/10.1016/j.tifs.2016.11.01034

    Article  CAS  Google Scholar 

  • Gepts, P., Beavis, W. D., Brummer, E. C., Shoemaker, R. C., Stalker, H. T., Weeden, N. F., & Young, N. D. (2005). Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference.

    Google Scholar 

  • Gilani, G. S., Cockell, K. A., & Sepehr, E. (2005). Effects of antinutritional factors on protein digestibility and amino acid availability in foods. Journal of AOAC International, 88(3), 967–987 37.

    Google Scholar 

  • Gioia, F. D., Renna, M., & Santamaria, P. (2017). Sprouts, microgreens and “baby leaf” vegetables. In Minimally processed refrigerated fruits and vegetables (pp. 403–432). Springer.

    Chapter  Google Scholar 

  • Gopala Krishna, A. G., Prabhakar, J. V., & Aitzetmüller, K. (1997). Tocopherol and fatty acid composition of some Indian pulses. Journal of the American Oil Chemists’ Society, 74(12), 1603–1606.

    Article  Google Scholar 

  • Hanif, M., Khattak, M. K., Ul Haq, I., Gul, K., Khan, A., Ullah, K., et al. (2019). Effects of temperature and water purity on germination and yield of mungbean sprouts. Sains Malaysiana, 48(4), 711–717.

    Article  CAS  Google Scholar 

  • Harina, T. H., & Ramirez, D. A. (1978). The amount and distribution of carotenoids in the mungbean seed (Vigna radiata Wilczek). Philippine Journal of Crop Science, 3(2), 65–70.

    Google Scholar 

  • Humphry, M. E., Lambrides, C. J., Chapman, S. C., Aitken, E. A. B., Imrie, B. C., Lawn, R. J., et al. (2005). Relationships between hard-seededness and seed weight in mungbean (Vigna radiata) assessed by QTL analysis. Plant Breeding, 124(3), 292–298.

    Article  CAS  Google Scholar 

  • Isemura, T., Kaga, A., Konishi, S., Ando, T., Tomooka, N., Han, O. K., & Vaughan, D. A. (2007). Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Annals of Botany, 100, 1053–1071.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katiyar, P. K., Chandra, S., Singh, B. B., & Dixit, G. P. (2006, December). Characterization of mungbean varieties released in India. In International Conference on Indigenous Vegetables and Legumes. Prospectus for Fighting Poverty, Hunger and Malnutrition 752 (pp. 271273).

    Google Scholar 

  • Kavas, A., & El, S. N. (1991). Nutritive value of germinated mung beans and lentils. Journal of Consumer Studies & Home Economics, 15(4), 357–366.

    Article  Google Scholar 

  • Ken Motley. (2004). AZUKI BEANS: Irrigated Planting Guide 2004-2005. NSW Department of Primary Industry. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/151095/azukibean2004-5.pdf. Accessed on 21 Jul 2022

  • Kentish, S., & Ashok Kumar, M. (2011). The physical and chemical effects of ultrasound. In Ultrasound technologies for food and bioprocessing (pp. 1–12). Springer.

    Google Scholar 

  • Kojima, M., Katagiri, Y., Furukawa, N., Mouri, H., Ohnishi, M., & Ito, S. (1991a). Sterollipids and sphingolipids in adzuki bean (Vigna angularis) organs. Res Bull Ohihiro Univ I, 17(7), 235–242.

    CAS  Google Scholar 

  • Kojima, M., Ohnisi, M., & Ito, S. (1991b). Fatty acid composition in leguminosae seeds. Res Bull Ohihiro Univ I, 17(3), 227–233.

    CAS  Google Scholar 

  • Kramer, C., Soltani, N., Swanton, C. J., Robinson, D. E., & Sikkema, P. H. (2010). Control of volunteer adzuki bean (Vigna angularis) with pre and postemergence herbicides in corn (Zea mays). Canadian Journal of Plant Science, 90, 925–932.

    Article  CAS  Google Scholar 

  • Kumar, V., Sinha, A. K., HPS, M., & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: a review. Food Chemistry, 120, 945–959. https://doi.org/10.1016/j.foodchem.2009.11.052

    Article  CAS  Google Scholar 

  • Kumar, S., Saxena, S., Verma, J., & Gautam, S. (2016). Development of ambient storable meal for calamity victims and other targets employing radiation processing and evaluation of its nutritional, organoleptic, and safety parameters. LWT-Food Science and Technology, 69, 409–416.

    Article  CAS  Google Scholar 

  • Lambrides, C. J., & Godwin, I. D. (2007). Mungbean. In Pulses, sugar and tuber crops (pp. 69–90). Springer.

    Chapter  Google Scholar 

  • Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171, 501–523.

    Article  PubMed  Google Scholar 

  • Li, L., Yang, T., Liu, R., Redden, B., Maalouf, F., & Zong, X. (2017). Food legume production in China. The Crop Journal, 5(2), 115–126.

    Article  Google Scholar 

  • Lim, T. K. (2012). Edible medicinal and non-medicinal plants (Vol. 1, pp. 656–687). Springer.

    Book  Google Scholar 

  • Liu, R., Cai, Z., & Xu, B. (2017). Characterization and quantification of flavonoids and saponins in adzuki bean (Vigna angularis L.) by HPLC–DAD–ESI–MSn analysis. Chemistry Central Journal, 11(1), 1–17.

    Article  Google Scholar 

  • Liu, Y., Xu, M., Wu, H., Jing, L., Gong, B., Gou, M., Zhao, K., & Li, W. (2018). The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. Journal of Food Science and Technology, 55(12), 5142–5552. https://doi.org/10.1007/s13197-018-3460-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Y., Xie, W., & Luo, F. (2012). Effect of several germination treatments on phosphatases activities and degradation of phytate in faba bean (Vicia faba L.) and azuki bean (Vigna angularis L.). Journal of Food Science, 77(10), C1023–C1029.

    Article  CAS  PubMed  Google Scholar 

  • Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., & Garnczarska, M. (2016). Seed priming: New comprehensive approaches for an old empirical technique. In New challenges in seed biology-basic and translational research driving seed technology (pp. 1–46).

    Google Scholar 

  • Ma, X., Liu, Y., Liu, J., Zhang, J., & Liu, R. (2020). Changes in starch structures and in vitro digestion characteristics during maize. Food Science & Nutrition, 8(3), 1700–1708. https://doi.org/10.1002/fsn3.145727

    Article  CAS  Google Scholar 

  • Mäkinen, O. E., & Arendt, E. K. (2015). Nonbrewing applications of malted cereals, pseudocereals, and legumes: A review. Journal of the American Society of Brewing Chemists, 73(3), 223–227. https://doi.org/10.1094/ASBCJ-2015-0515-0128

    Article  Google Scholar 

  • Malaguti, M., Dinelli, G., Leoncini, E., Bregola, V., Bosi, S., Cicero, A. F., & Hrelia, S. (2014). Bioactive peptides in cereals and legumes: agronomical, biochemical and clinical aspects. International Journal of Molecular Sciences, 15(11), 21120–21135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangaraj, S., Agrawal, S., Kulkarni, S. D., & Kapur, T. (2005). Studies on physical properties and effect of pre-milling treatments on cooking quality of pulses. Journal of Food Science and Technology, 42(3), 258–262.

    Google Scholar 

  • Marti, A., Cardone, G., & Pagani, M. A. (2021). Sprouted cereal grains and products. In M. Pojic & U. Tiwari (Eds.), Innovative processing technologies for healthy grains (1st ed., pp. 113–141). Wiley.

    Google Scholar 

  • Masood, T., Shah, H. U., & Zeb, A. (2014). Effect of sprouting time on proximate composition and ascorbic acid level of mung bean (Vigna radiate L.) and chickpea (Cicer arietinum L.) seeds. JAPS, 24(3).

    Google Scholar 

  • Mbithi, S., Van Camp, J., Rodriguez, R., & Huyghebaert, A. (2001). Effects of sprouting on nutrient and antinutrient composition of kidney beans (Phaseolus vulgaris var. Rose coco). European Food Research and Technology, 212(2), 188–191.

    Article  Google Scholar 

  • Mendoza, E. M. T., Barroga, C. F., Rodriguez, F. M., Revilleza, M. J. R., & Laurena, A. C. (1988). factors affecting the nutritional quality and accept ability of mung bean (vigna radiata (L.) WILZECK). Trans Nat A Cad Sci Tech (Phils.), 10, 305–322.

    Google Scholar 

  • Mendoza-Sánchez, M., Guevara-González, R. G., Castaño-Tostado, E., Mercado-Silva, E. M., Acosta-Gallegos, J. A., Rocha-Guzmán, N. E., & Reynoso-Camacho, R. (2016). Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts. Food Chemistry, 212, 128–137.

    Article  PubMed  Google Scholar 

  • Menon, L., Majumdar, S. D., & Ravi, U. (2015). Development and analysis of composite flour bread. Journal of Food Science and Technology, 52(7), 4156–4165.

    Article  PubMed  Google Scholar 

  • Messina, M. J. (1999). Legumes and soybeans: overview of their nutritional profiles and health effects. The American Journal of Clinical Nutrition, 70(3), 439s–450s.

    Article  CAS  PubMed  Google Scholar 

  • Molina, M. R., De La Fuente, G., & Bressani, R. (1974). Interrelationships between soaking time, cooking time, nutritive value and other characteristics of beans (Phaseolus vulgaris). Journal of Food Science, 24, 469–483.

    CAS  Google Scholar 

  • Murakami, T., Sirpin, S., Wadisirisuk, P., Boonkerd, N., Yoneyama, T., Yokoyama, T., & Imai, H. (1990). Nitrogen fixing ability of mungbean (Vigna radiata). In Proceedings of the Mungbean Meeting 90, held in Chiang Mai, Thailand, February 23-24, 1990/supported by Tropical Agriculture Research Center, Japan, cooporated with Department of Agriculture and Kasetsart University. Tropical Agriculture Research Center [1991].

    Google Scholar 

  • National Advisory Committee on Microbiological Criteria for Foods. (1999). Microbiological safety evaluations and recommendations on sprouted seeds. International Journal of Food Microbiology, 52(3), 123–153.

    Article  Google Scholar 

  • Nelson, K., Stojanovska, L., Vasiljevic, T., & Mathai, M. (2013). Germinated grains: A superior whole grain functional food? Canadian Journal of Physiology and Pharmacology, 91(6), 429–441. https://doi.org/10.1139/cjpp2012-0351

    Article  CAS  PubMed  Google Scholar 

  • Nisha, P., Singhal, R. S., & Pandit, A. B. (2005). A study on degradation kinetics of riboflavin in green gram whole (Vigna radiata L.). Food Chemistry, 89(4), 577–582.

    Article  CAS  Google Scholar 

  • Nkhata, S. G., Ayua, E., Kamau, E. H., & Shingiro, J. B. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition, 6(8), 2446–2458. https://doi.org/10.1002/fsn3.84638

    Article  CAS  Google Scholar 

  • Paucar-Menacho, L. M., Martínez-Villaluenga, C., Duenas, M., Frias, J., & Penas, E. (2017). Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT – Food Science & Technology, 76, 236–244. https://doi.org/10.1016/j.lwt.2016.07.06433

    Article  CAS  Google Scholar 

  • Peñas, E., & Martínez-Villaluenga, C. (2020). Advances in production, properties and applications of sprouted seeds. Foods, 9, 1–3. https://doi.org/10.3390/foods906079024

    Article  Google Scholar 

  • Piyasena, P., Mohareb, E., & McKellar, R. C. (2003). Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology, 87(3), 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Podsedek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT – Food Science & Technology, 40, 1–11. https://doi.org/10.1016/j.lwt.2005.07.02330

    Article  CAS  Google Scholar 

  • Prabhavat, S. (1988). Mungbean utilization in Thailand. In Second International Mungbean Symposium Proceedings. AVRDC, Shanhua, Tainan, Taiwan (pp. 508–519).

    Google Scholar 

  • Raes, K., Knockaert, D., Struijs, K., & Van Camp, J. (2014). Role of processing on bioaccessibility of minerals: Influence of localization of minerals and antinutritional factors in the plant. Trends in Food Science & Technology, 37(1), 32–41.

    Article  CAS  Google Scholar 

  • Roche, A., Ross, E., Walsh, N., O’Donnell, K., Williams, A., Klapp, M., Fullard, N., & Edelstein, S. (2017). Representative literature on the phytonutrients category: Phenolic acids. Critical Reviews in Food Science and Nutrition, 57(6), 1089–1096. https://doi.org/10.1080/10408398.2013.86558931

    Article  CAS  PubMed  Google Scholar 

  • Sacks, M. F. (1977). A literature review of Phaseolus angularis, the adzuki bean. Economic Botany, 31, 9–15.

    Article  Google Scholar 

  • Salisbury, F. B., & Ross, C. W. (1985). Plant physiology (3rd ed., pp. 5–8). Wadsworth Publication Corporation.

    Google Scholar 

  • Samuolienė, G., Urbonavičiūtė, A., Brazaitytė, A., Šabajevienė, G., Sakalauskaitė, J., & Duchovskis, P. (2011). The impact of LED illumination on antioxidant properties of sprouted seeds. Open Life Sciences, 6(1), 68–74.

    Article  Google Scholar 

  • Sango, M., Abela, D., McElhatton, A., & Valdramidis, V. P. (2014). Assisted ultrasound applications for the production of safe foods. Journal of Applied Microbiology, 116(5), 1067–1083.

    Article  CAS  PubMed  Google Scholar 

  • Sathe, S. K. (1996). The nutritional value of selected Asiatic pulses: chickpea, black gram, mung bean and pigeon pea. In Food and feed from legumes and oilseeds (pp. 12–32). Springer.

    Chapter  Google Scholar 

  • Savelkoul, F. H. M. G., Van der Poel, A. F. B., & Tamminga, S. (1992). The presence and inactivation of trypsin inhibitors, tannins, lectins and amylase inhibitors in legume seeds during germination. A review. Plant Foods for Human Nutrition, 42(1), 71–85.

    Article  CAS  PubMed  Google Scholar 

  • Scouten, A. J., & Beuchat, L. R. (2002). Combined effects of chemical, heat and ultrasound treatments to kill Salmonella and Escherichia coli O157: H7 on alfalfa seeds. Journal of Applied Microbiology, 92(4), 668–674.

    Article  CAS  PubMed  Google Scholar 

  • Sefa-Dedeh, S., & Stanley, D. W. (1979). Textural implications of the microstructure of legumes. Food Technology, 33(10), 77–83.

    Google Scholar 

  • Sekhon, K. S., Gupta, S. K., & Bakhshi, A. K. (1980). Amino acid composition of mung (Phaseolus aureus). Indian Journal of Nutrition and Dietetics, 16, 417–419.

    Google Scholar 

  • Sharma, S., Verma, R., Singh, N., & Dhaliwal, Y. S. (2018). Assessment of anti nutritional factors and antioxidants in three genotypes of adzuki beans. Journal of Pharmacognosy and Phytochemistry, 8(1), 1376–1378.

    Google Scholar 

  • Singh, S., Singh, H. D., & Sikka, K. C. (1968). Distribution of nutrients in the anatomical parts of common Indian pulses. Cereal Chemistry, 45, 13–18.

    CAS  Google Scholar 

  • Smýkal, P., Vernoud, V., Blair, M. W., Soukup, A., & Thompson, R. D. (2014). The role of the testa during development and in establishment of dormancy of the legume seed. Frontiers in Plant Science, 5, 351.

    PubMed  PubMed Central  Google Scholar 

  • Sood, D. R., Wagle, D. S., & Dhindsa, K. S. (1982). Studies on the nutritional quality of some varieties of mung bean (Vigna radiata). Journal of Food Science and Technology, 19, 123–125.

    CAS  Google Scholar 

  • Swieca, M., Gawlik-Dziki, U., Jakubczyk, A., Bochnak, J., Sikora, M., & Suliburska, J. (2019). Nutritional quality of fresh and stored legumes sprouts–Effect of Lactobacillus plantarum 299v enrichment. Food Chemistry, 288, 325–332.

    Article  CAS  PubMed  Google Scholar 

  • Świeca, M., Kordowska-Wiater, M., Pytka, M., Gawlik-Dziki, U., Seczyk, L., Złotek, U., & Kapusta, I. (2019). Nutritional and prohealth quality of lentil and adzuki bean sprouts enriched with probiotic yeast Saccharomyces cerevisiae var. boulardii. LWT—Food Science and Technology, 100, 220–226.

    Article  Google Scholar 

  • Świeca, M., Herok, A., Piwowarczyk, K., Sikora, M., Ostanek, P., Gawlik-Dziki, U., Kapusta, I., & Czyż, J. (2020). Potentially bioaccessible phenolics from mung bean and adzuki bean sprouts enriched with probiotic—Antioxidant properties and effect on the motility and survival of AGS human gastric carcinoma cells. Molecules, 25(13), Article 2963.

    Article  PubMed  Google Scholar 

  • Syed, A. S., Aurang, Z., Tariq, M., Nadia, N., Sayed, J. A., Muhammad, S., et al. (2011). Effects of sprouting time on biochemical and nutritional qualities of Mungbean varieties. African Journal of Agricultural Research, 6(22), 5091–5098.

    Google Scholar 

  • Taiz, L. (1998). Plant defenses: surface protection and secondary metabolites. In L. Taiz & E. Zeiger (Eds.), Plant Physiology (pp. 350–353).

    Google Scholar 

  • Tajoddin, M., Shinde, M., & Lalitha, J. (2010). Polyphenols of mung bean (Phaseolus aureus L.) cultivars differing in seed coat color: Effect of dehulling. Journal of New Seeds, 11(4), 369–379.

    Article  Google Scholar 

  • Tateishi, Y. (1996). Systematics of the species of Vigna subgenus Ceratotropis. In Mungbean Germplasm: Collection and utilization for breeding program (pp. 9–24).

    Google Scholar 

  • Tomooka, N., Lairungreang, C., Nakeeraks, P., Egawa, Y., & Thavarasook, C. (1992). Center of genetic diversity and dissemination pathways in mung bean deduced from seed protein electrophoresis. Theoretical and Applied Genetics, 83(3), 289–293.

    Article  CAS  PubMed  Google Scholar 

  • Tomooka, N., Vaughan, D. A., & Kaga, A. (2005). Mungbean [Vigna radiata (L.) Wilczek]. Genetic Resources, Chromosome Engineering, and Crop Improvement: Grain Legumes, 1, 325–345.

    CAS  Google Scholar 

  • Vanderstoep, J. (1981). Effect of germination on the nutritive value of legumes. Food Technology (USA).

    Google Scholar 

  • Vavilov, N. I. (1926). Studies on the origin of cultivated plants. Institut de Botanique Appliquée et d’Amélioration des Plantes.

    Google Scholar 

  • Wang, B., Zhan, S., Xia, Y., & Lee, L. (2008). Effect of sodium iron ethylenediaminetetra-acetate (NaFeEDTA) on haemoglobin and serum ferritin in iron-deficient populations: a systematic review and meta-analysis of randomized and quasi-randomized controlled trials. British Journal of Nutrition, 100(6), 1169–1178.

    Article  CAS  PubMed  Google Scholar 

  • Werker, E., Marbach, I., & Mayer, A. M. (1979). Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus Pisum. Annals of Botany, 43(6), 765–771.

    Article  CAS  Google Scholar 

  • Yadav, U., Singh, N., Kaur, A., & Thakur, S. (2018). Physico-chemical, hydration, cooking, textural and pasting properties of different adzuki bean (Vigna angularis) accessions. Journal of Food Science and Technology, 55(2), 802–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Meier, F., Lo, J. A., Yuan, W., Sze, V. L. P., Chung, H. J., et al. (2013). Overview of recent events in the microbiological safety of sprouts and new intervention technologies. Comprehensive Reviews in Food Science and Food Safety, 12, 265–280. https://doi.org/10.1111/1541-4337.1201025

    Article  Google Scholar 

  • You, S. Y., Oh, S. G., Han, H. M., Jun, W., Hong, Y. S., & Chung, H. J. (2016). Impact of germination on the structures and in vitro digestibility of starch from waxy brown rice. International Journal of Biological Macromolecules, 82, 863–870. https://doi.org/10.1016/j.ijbiomac.2015.11.02329

    Article  CAS  PubMed  Google Scholar 

  • Yousif, A. M., Kato, J., & Deeth, H. C. (2003). Effect of storage time and conditions on the seed coat colour of Australian adzuki beans. Food Australia, 55(10), 479–484.

    Google Scholar 

  • Yousif, A. M., Kato, J., & Deeth, H. C. (2007). Effect of storage on the biochemical structure and processing quality of adzuki bean (Vigna angularis). Food Reviews International, 23(1), 1–33.

    Article  CAS  Google Scholar 

  • Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y., & Yang, T. (2015). Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of Food Science, 80(5), H1111–H1119. https://doi.org/10.1111/1750-3841.1283039

    Article  CAS  PubMed  Google Scholar 

  • Zia-Ul-Haq, M., Ahmad, M., & Iqbal, S. (2008). Characteristics of oil from seeds of 4 mungbean [Vigna radiata (L.) Wilczek] cultivars grown in Pakistan. Journal of the American Oil Chemists' Society, 85(9), 851–856.

    Article  CAS  Google Scholar 

  • Złotek, U., Świeca, M., Reguła, J., Jakubczyk, A., Sikora, M., GawlikDziki, U., & Kapusta, I. (2019). Effects of probiotic L. plantarum 299v on consumer quality, accumulation of phenolics, antioxidant capacity and biochemical changes in legume sprouts. International Journal of Food Science & Technology, 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brar, D.S., Kaur, A., Nanda, V. (2023). Mung and Adzuki Bean Sprouts. In: Majid, I., Kehinde, B.A., Dar, B., Nanda, V. (eds) Advances in Plant Sprouts. Springer, Cham. https://doi.org/10.1007/978-3-031-40916-5_11

Download citation

Publish with us

Policies and ethics