Skip to main content

AeroSPEED: A High Order Acoustic Solver for Aeroacoustic Applications

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems (FVCA 2023)

Abstract

We propose AeroSPEED, a solver based on the Spectral Element Method (SEM) that solves the aeroacoustic Lighthill’s wave equation. First, the fluid solution is computed employing a cell centered Finite Volume method. Then, AeroSPEED maps the sound source coming from the flow solution onto the acoustic grid, where finally the Lighthill’s wave equation is solved. An ad-hoc projection strategy is adopted to apply the flow source term in the acoustic solver. A model problem with a manufactured solution and the Noise Box test case are used as benchmark for the acoustic problem. We studied the noise generated by the complex flow field around tandem cylinders as a relevant aeroacoustic application. AeroSPEED is an effective and accurate solver for both acoustics and aeroacoustic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artoni, A., Antonietti, P. F., Mazzieri, I., Parolini, N., Rocchi, D.: A hybrid finite volume – spectral element method for aeroacoustic problems (2023). arXiv:2302.03370

  2. COMSOL Multiphysics v. 6.1. COMSOL AB, Stockholm, Sweden. www.comsol.com

  3. Curle, N.: The influence of solid boundaries upon aerodynamic sound. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 231, no. 1187 (1955)

    Google Scholar 

  4. Epikhin, A., Evdokimov, I., Kraposhin, M., Kalugin, M., Strijhak, S.: Development of a dynamic library for computational aeroacoustics applications using the OpenFOAM open source package. Procedia Comput. Sci. 66, 150-157 (2015). https://www.sciencedirect.com/science/article/pii/S1877050915033670

  5. Greschner, B., Eschricht, D., Mockett, C., Thiele, F.: Turbulence modelling effects on tandem cylinder interaction flow and analysis of installation effects on broadband noise using chimera technique. In: 30th AIAA Applied Aerodynamics Conference (2012)

    Google Scholar 

  6. Gritskevich, M.S., Garbaruk, A.V., Schütze, J., Menter, F.R.: Development of DDES and IDDES formulations for the k-\(\omega \) shear stress transport model. Flow Turbul. Combust. 88(3), 431–449 (2011)

    Article  MATH  Google Scholar 

  7. Liu, L.: Design, simulation and testing of a coupled plate-cavity system targeted for vehicle interior noise analysis and control. Ph.D. Thesis, Politecnico di Milano (2021)

    Google Scholar 

  8. Lockard, D.: Summary of the tandem cylinder solutions from the benchmark problems for airframe noise computations-I workshop. AIAA 2011-353. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011)

    Google Scholar 

  9. Mazzieri, I., Stupazzini, M., Guidotti, R., Smerzini, C.: SPectral Elements in Elastodynamics with Discontinuous Galerkin: a non-conforming approach for 3D multi-scale problems. Int. J. Numer. Meth. Eng. 95(12), 991–1010 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Neuhart, D., Jenkins, L., Choudhari, M., Khorrami, M.: Measurements of the flowfield interaction between tandem cylinders, AIAA 2009-3275. In: 15th AIAA/CEAS Aeroacoustics Conference (2009)

    Google Scholar 

  11. Spalding, D.B.: A single formula for the “Law of the Wall”. J. Appl. Mech. (1961)

    Google Scholar 

  12. Schoder, S., Kaltenbacher, M.: Hybrid aeroacoustic computations: state of art and new achievements. J. Theor. Comput. Acoust. 27 (2019)

    Google Scholar 

  13. Weinmann, M., Sandberg, R.D., Doolan, C.: Tandem cylinder flow and noise predictions using a hybrid RANS/LES approach. Int. J. Heat Fluid Flow 50 (2014)

    Google Scholar 

  14. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  Google Scholar 

  15. Kaltenbacher, M., Escobar, M., Becker, S., Ali, I.: Computational aeroacoustics based on Lighthill’s acoustic analogy. In: Marburg, S., Nolte, B. (eds.) Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola F. Antonietti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Artoni, A. et al. (2023). AeroSPEED: A High Order Acoustic Solver for Aeroacoustic Applications. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 432. Springer, Cham. https://doi.org/10.1007/978-3-031-40864-9_3

Download citation

Publish with us

Policies and ethics