Skip to main content

Local Characteristic Decomposition Based Central-Upwind Scheme for Compressible Multifluids

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems (FVCA 2023)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 433))

Included in the following conference series:

  • 151 Accesses

Abstract

In this paper, we introduce the local characteristic decomposition based central-upwind (LCD-CU) scheme for compressible multifluids. The scheme is implemented within the hybrid multifluid algorithm from [A. Chertock, S. Chu, and A. Kurganov, J. Sci. Comput, 89(2021), Paper No. 48], according to which we use the level set method to track the position of material interfaces and replace the conservative compressible Euler equations with the pressure-based nonconservative ones in the vicinities of the interfaces. The LCD-CU scheme is used away from the interfaces and this helps to reduce the numerical dissipation in these areas. At the interfaces, we still use the path-conservative central-upwind scheme designed to accurately solve nonconservative hyperbolic systems. This leads to a substantially higher resolution, especially in the two-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abgrall, R., Karni, S.: Ghost-fluids for the poor: a single fluid algorithm for multifluids. In: Hyperbolic Problems: Theory, Numerics, Applications. Birkhäuser, International Series of Numerical Mathematics, vols. 140, 141, pp. 1–10 (2001). https://doi.org/10.1007/978-3-0348-8370-2_1

  2. Abgrall, R., Saurel, R.A.: Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186, 361–396 (2003). https://doi.org/10.1016/S0021-9991(03)00011-1

  3. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001). https://doi.org/10.1006/jcph.2000.6685

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181, 577–616 (2002). https://doi.org/10.1006/jcph.2002.7143

    Article  MathSciNet  MATH  Google Scholar 

  5. Castro Díaz, M.J., Kurganov, A., Morales de Luna, T.: Path-conservative central-upwind schemes for nonconservative hyperbolic systems. ESAIM Math. Model. Numer. Anal. 53, 959–985 (2019). https://doi.org/10.1051/m2an/2018077

  6. Cheng, J., Zhang, F., Liu, T.G.: A quasi-conservative discontinuous Galerkin method for solving five equation model of compressible two-medium flows. J. Sci. Comput. 85, 12–35 (2020). https://doi.org/10.1007/s10915-020-01319-5

    Article  MathSciNet  MATH  Google Scholar 

  7. Chertock, A., Chu, S., Herty, M., Kurganov, A., Lukáčová-Medvid’ová, M.: Local characteristic decomposition based central-upwind scheme. J. Comput. Phys. 473, Paper No. 111718 (2023). https://doi.org/10.1016/j.jcp.2022.111718

  8. Chertock, A., Chu, S., Kurganov, A.: Hybrid multifluid algorithms based on the path-conservative central-upwind scheme. J. Sci. Comput. 89, Paper No. 48 (2021). https://doi.org/10.1007/s10915-021-01656-z

  9. Chertock, A., Karni, S., Kurganov, A.: Interface tracking method for compressible multifluids. M2AN Math. Model. Numer. Anal. 42, 991–1019 (2008). https://doi.org/10.1051/m2an:2008036

  10. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236

    Article  MathSciNet  MATH  Google Scholar 

  11. Gottlieb, S., Shu, C.- W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001). https://doi.org/10.1137/S003614450036757X

  12. Hesthaven, J.S.: Numerical methods for conservation laws: from analysis to algorithms. In: Computational Science & Engineering. SIAM, PA, (2018). https://doi.org/10.1137/1.9781611975109

  13. Karni, S.: Hybrid multifluid algorithms. SIAM J. Sci. Comput. 17, 1019–1039 (1996). https://doi.org/10.1137/S106482759528003X

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. J. Comput. Phys. 2, 141–163 (2007). https://doi.org/10.4236/ns.2010.28114

    Article  MathSciNet  MATH  Google Scholar 

  15. LeVeque, R.J.: Finite volume methods for hyperbolic problems. In: Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/CBO9780511791253

  16. Mulder, W., Osher, S., Sethian, J.A.: Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100, 209–228 (1992). https://doi.org/10.1016/0021-9991(92)90229-R

    Article  MathSciNet  MATH  Google Scholar 

  17. Quirk, J.J., Karni, S.: On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318, 129–163 (1996). https://doi.org/10.1017/S0022112096007069

    Article  MATH  Google Scholar 

  18. Saurel, R., Abgrall, R.: A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21, 1115–1145 (1999). https://doi.org/10.1137/S1064827597323749

    Article  MathSciNet  MATH  Google Scholar 

  19. Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242 (1998). https://doi.org/10.1006/jcph.1998.5930

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, C.W., Shu, C.- W.: An interface treating technique for compressible multi-medium flow with Runge-Kutta discontinuous Galerkin method. J. Comput. Phys. 229, 8823–8843 (2010). https://doi.org/10.1016/j.jcp.2010.08.012

Download references

Acknowledgements

The work of A. Kurganov was supported in part by NSFC grant 12171226 and by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design (No. 2019B030301001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kurganov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, S., Kurganov, A. (2023). Local Characteristic Decomposition Based Central-Upwind Scheme for Compressible Multifluids. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 433. Springer, Cham. https://doi.org/10.1007/978-3-031-40860-1_8

Download citation

Publish with us

Policies and ethics