Skip to main content

On Felix Klein’s Early Geometrical Works, 1869–1872

  • Chapter
  • First Online:
The Richness of the History of Mathematics

Part of the book series: Archimedes ((ARIM,volume 66))

Abstract

Felix Klein’s formative years constitute a famous chapter in the history of mathematics, especially familiar because Klein himself wrote about it often. Later writers have often highlighted his collaboration with Sophus Lie and the ideas that led to Klein’s “Erlangen Program.” Klein re-packaged his early work when he edited his collected works, a project that engaged his attention from 1919 to 1923. By unpacking its first volume, we can begin to appreciate that transformations groups formed a relatively small part of Klein’s early geometrical work, whereas a great deal of it was devoted to important new results in line geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For those with an interest in connections between the ideas in the Erlangen Program and mathematical physics, see the essays in Ji and Papadopoulos (2015).

  2. 2.

    In my view, historians should avoid the temptation to adjudicate past contests—such as the “race” between Einstein and Hilbert for generally covariant gravitational field equations that was taken up in the late 1990s—nor should they make lightly considered retrospective value judgments about the status of past work.

  3. 3.

    For an enlightening study of Newton’s mathematical views and methods, see Guicciardini (2009). Until well into the twentieth century, mathematicians and historians of mathematics often took sides in the Newton vs. Leibniz story, and much of this literature reflects strongly nationalistic inclinations toward hero worship. A more objective attitude gradually emerged after the Second World War, however, when a great deal of relevant source material came to light. Even so, the Newton scholar A.R. Hall expressed great dismay over some of the opinions expressed by Joseph Ehrenfried Hofmann in Hofmann (1974), the standard account of Leibniz’s intellectual journey leading to the calculus (Hall 1980, 65–67). Today, one can easily study Newton’s early works in D.T. Whiteside’s monumental editions of The Mathematical Papers of Isaac Newton in eight volumes (Whiteside 1967–1981), whereas the editors of the Leibniz edition in Hanover continue to turn out new volumes of his mathematical manuscripts.

  4. 4.

    Without naming sources or dates, Stubhaug’s study cites passages from several letters from Lie to Klein, in which he vented his anger over Killing’s work and especially Engel’s role in corresponding with Killing; several of the letters cited can be found in Rowe (1988).

  5. 5.

    Klein signaled the new ones by writing them in square brackets.

  6. 6.

    Hilbert was still alive and so had the opportunity to read the three volumes of his papers (Hilbert 1932–1935), but he took no part in preparing that edition.

  7. 7.

    As he told me in an interview conducted in Lugano in September 1984.

  8. 8.

    See Konrad Jakobs and Heinrich Utz, Erlangen Programs, Mathematical Intelligencer 6(1)(1984): 79.

  9. 9.

    He had to add a footnote in 1893, when the text of Klein (1872/1893) was reprinted, pointing out that one needed to stipulate that the group contains its inverse transformations.

  10. 10.

    For a brief account, see Stubhaug (2002, 386–389), which however fails to engage with many aspects of this conflict.

  11. 11.

    Lie was reacting to Klein’s interest in launching the Encyklopädie der mathematischen Wissenschaften, but he likely also had in mind his recently published Evanston Colloquium Lectures.

  12. 12.

    Detailed accounts of Staudt’s work as well as Klein’s part in the later developments can be found in two French studies, Nabonnand (2008) and Voelke (2008).

  13. 13.

    On the early reception of non-Euclidean geometry in Germany, see Volkert (2013).

  14. 14.

    “Haben Sie das Plückersche Werk gesehen, welches unter meinen Auspicien in die Welt gegangen ist? Schöne Gedanken, aber welche Darstellung!” (Confalonieri 2019, 73).

  15. 15.

    On his family background and youth, see Wiescher (2016).

  16. 16.

    The notions of order and class refer here respectively to the number of singular lines passing through a generic point and the number that lie in a generic plane.

  17. 17.

    A student who attended wrote up a detailed report on these models in the Göttingen collection (see modellsammlung.uni-goettingen.de).

  18. 18.

    Israel (1994, 54); Klein was also eager to learn Cremona’s opinion of his work, especially in view of the fact that he had shown that Battaglini’s recent study (Battaglini 1868) did not represent the general case of a quadratic line complex.

  19. 19.

    In 1870, Ferdinando Aschieri showed that the Battaglini complex could be viewed geometrically as the family of lines that intersect two quadric surfaces harmonically, thus, in four points with cross ratio equal to \(-\)1; see Rowe (2016, 246).

  20. 20.

    Klein used the terminology of complexes that lie in involution with one another, but Hudson found this language awkward and I here follow Hudson (1990, 38).

  21. 21.

    Actually, Plücker freely mixed projective and metric concepts, whereas Klein belonged to a younger generation of geometers who paid careful attention to this distinction.

  22. 22.

    Asymptotic curves on surfaces are those along which the tangent plane and osculating plane coincide; see Struik (1961, 96).

  23. 23.

    The incident that led to this declaration of war bears a striking resemblance to Putin’s demand that Ukraine shall never be allowed to join NATO. France insisted that the Catholic branch of the Hollenzollerns, which had declined an offer to assume the throne of Spain, should declare that this decision was valid for all time. Bismarck famously took full advantage of this diplomatic blunder.

  24. 24.

    Klein to Lie, 29 July 1870, quoted from Rowe (2019, 190).

  25. 25.

    This was duly noted by Engel and Heegaard in their notes on this paper; see Lie (1934, 674).

  26. 26.

    The claim is correct if one assumes the common asymptotic tangents are also tangents to the curve along which the surfaces touch.

References

  • Barrow-Green, June. 2021. “Knowledge Gained by Experience”: Olaus Henrici – Engineer, Geometer and Maker of Mathematical Models. Historia Mathematica 54: 41–76.

    MathSciNet  Google Scholar 

  • Battaglini, Giuseppe. 1868. Intorno ai sistemi di rette di secondo grado. Giornale di Matematiche 6 (1868): 239–283.

    Google Scholar 

  • Biagioli, Mario. 1993. Galileo, Courtier: The Practice of Science in the Culture of Absolutism. Chicago: University of Chicago Press.

    Google Scholar 

  • Biermann, Kurt-R. 1988. Die Mathematik und ihre Dozenten an der Berliner Universität, 1810–1933. Berlin: Akademie Verlag.

    Google Scholar 

  • Confalonieri, Sara, Peter-Maximilian Schmidt, Klaus Volkert, Hrsg. 2019. Der Briefwechsel von Wilhelm Fiedler mit Alfred Clebsch, Felix Klein und italienischen Mathematikern. Siegen: Universitätsbibliothek der Universität Siegen.

    Google Scholar 

  • Cayley, Arthur. 1871. On Plücker’s Models of Certain Quartic Surfaces. Proceedings of the London Mathematical Society 3 (1871): 281–285.

    Google Scholar 

  • Clebsch, Alfred. 1871. Zum Gedächtnis an Julius Plücker. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen Band 16: 1–40.

    Google Scholar 

  • Cogliati, Alberto, ed. 2019. Serva di Due Padroni: Saggi di Storia della Matematica in onore di Umberto Bottazzini. Milano: Egea, 2015.

    Google Scholar 

  • Darboux, Gaston. 1899. Sophus Lie. Bulletin of the American Mathematical Society 5 (7): 367–370.

    Google Scholar 

  • Gray, Jeremy. 2008. Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd ed. Basel: Birkäuser.

    Google Scholar 

  • Gray, Jeremy. 2011. Worlds out of Nothing: A Course on the History of Geometry in the 19th Century. 2nd ed. Heidelberg: Springer.

    Google Scholar 

  • Gray, Jeremy. 2013. Henri Poincaré: A Scientific Biography. Princeton: Princeton University Press.

    Google Scholar 

  • Gray, Jeremy. 2015. Klein and the Erlangen Programme. In Ji and Papadopoulos (2015), 59–76.

  • Gray, Jeremy. 2018. A History of Abstract Algebra: From Algebraic Equations to Modern Algebra. Heidelberg: Springer.

    Google Scholar 

  • Gray, Jeremy. 2019. 19th Century Galois Theory. In Cogliati (2019), 97–127.

  • Guicciardini, Niccolò. 2009. Isaac Newton on Mathematical Certainty and Method. Cambridge: MIT Press.

    Google Scholar 

  • Hall, A. Rupert. 1980. Philosophers at War. The Quarrel Between Newton and Leibniz. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hawkins, Thomas. 1984. The Erlanger Programm of Felix Klein: Reflections on its Place in the History of Mathematics. Historia Mathematica 11: 442–470.

    MathSciNet  Google Scholar 

  • Hawkins, Thomas. 2000. Emergence of the Theory of Lie Groups. An Essay in the History of Mathematics, 1869–1926. Heidelberg: Springer.

    Google Scholar 

  • Hilbert, David. 1932–1935. Gesammelte Abhandlungen, 3 vols. Berlin: Springer.

    Google Scholar 

  • Hilbert, David, and Stephan Cohn-Vossen. 1932. Anschauliche Geometrie. Berlin: Springer.

    Google Scholar 

  • Hilbert, David, and Stephan Cohn-Vossen. 1952/1999. Geometry and the Imagination, 2nd ed. Providence: AMS Chelsea Pub.

    Google Scholar 

  • Hofmann, Joseph E. 1974. Leibniz in Paris, 1672–1676: His Growth to Mathematical Maturity. Trans. Adolf Prag and D.T. Whiteside. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hudson, Ronald W. H. T. 1990. Kummer’s Quartic Surface. Cambridge: Cambridge University Press, 1905; reprinted in 1990.

    Google Scholar 

  • Israel, Georgio, et al., eds. 1992. La corrispondenza di Luigi Cremona (1830–1903), volume I, Serie di Quaderni della Rivista di Storia della Scienza, n. 1, Rome, 1992.

    Google Scholar 

  • Israel, Georgio, et al., eds. 1994. La corrispondenza di Luigi Cremona (1830–1903), volume II, Serie di della Rivista di Storia della Scienza; n. 3, Rome, 1994.

    Google Scholar 

  • Ji, Lizhen, and Athanase Papadopoulos, eds. 2015. Sophus Lie and Felix Klein: The Erlangen Program and its Impact in Mathematics and Physics. IRMA Lectures in Mathematics and Theoretical Physics 23. Zürich: European Mathematical Society.

    Google Scholar 

  • Klein, Felix. 1869. Bewerbungsschrift zur Aufnahme in das Berliner Mathematische Seminar (unveröffentlichtes Manuskript). Klein Nachlass 13A, Niedersächsische Staats- und Universitätsbibliothek Göttingen.

    Google Scholar 

  • Klein, Felix. 1870. Zur Theorie der Liniencomplexe des ersten und zweiten Grades. Mathematische Annalen 2: 198–228. Reprinted in Klein (1921–1923, I: 53–80).

  • Klein, Felix. 1871a. Zur Theorie der Kummer’schen Fläche und der zugehörigen Linien-Komplexe zweiten Grades. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 1871: 44–49.

    Google Scholar 

  • Klein, Felix. 1871b. Ueber die sogenannte Nicht-euklidische Geometrie, Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 1871: 419–433.

    Google Scholar 

  • Klein, Felix. 1871c. Über die sogenannte Nicht-Euklidische Geometrie. Mathematische Annalen 4: 573–625. Reprinted in Klein (1921–1923, I: 254–305).

  • Klein, Felix. 1872. Ueber gewisse in der Liniengeometrie auftretende Differentialgleichungen. Mathematische Annalen 5: 278–303. Reprinted in Klein (1921–1923, I: 127–152).

  • Klein, Felix. 1872/1893. Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: A. Deichert. Reprinted in Mathematische Annalen 43: 63–100. Reprinted in Klein (1921–1923, 1: 460–496).

  • Klein, Felix. 1892. Über Lies und meine Arbeiten aus den Jahren 1870–72, Sophus Lie Papers, National Library Oslo.

    Google Scholar 

  • Klein, Felix. 1893. Nicht-Euklidischen Geometrie I, Vorlesung gehalten während des Wintersemesters 1889–1890. Friedrich Schilling, Hrsg., Göttingen.

    Google Scholar 

  • Klein, Felix. 1921–1923. Gesammelte Mathematische Abhandlungen. 3 Bde. Berlin: Julius Springer.

    Google Scholar 

  • Klein, Felix. 1926. Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, vol. 1. Berlin: Julius Springer.

    Google Scholar 

  • Klein, Felix, and Sophus Lie. 1870/1884. Ueber die Haupttangentencurven der Kummer’schen Fläche vierten Grades mit 16 Knotenpunkten. Mathematische Annalen 23 (1884): 198–228. Reprinted in Klein (1921–1923, I: 90–97).

  • Kummer, E. E. 1975. Ernst Eduard Kummer, Collected Papers, ed. A. Weil, vol. 2. Berlin: Springer.

    Google Scholar 

  • Lie, Sophus. 1872. Ueber Complexe, insbesondere Linien- und Kugelcomplexe, mit Anwendung auf die Theorie partieller Differential-Gleichungen. Mathematische Annalen 5 (1872): 145–256.

    MathSciNet  Google Scholar 

  • Lie, Sophus. 1934. Gesammelte Abhandlungen, Bd. 1, Friedrich Engel u. Poul Heegaard, Hrsg. Leipzig: Teubner.

    Google Scholar 

  • Lie, Sophus. 1935. Gesammelte Abhandlungen, Bd. 2, Friedrich Engel u. Poul Heegaard, Hrsg. Leipzig: Teubner.

    Google Scholar 

  • Lie, Sophus, and Georg Scheffers. 1891. Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Leipzig: Teubner.

    Google Scholar 

  • Lie, Sophus, and Georg Scheffers. 1893. Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen. Leipzig: Teubner.

    Google Scholar 

  • Lie, Sophus, and Georg Scheffers. 1896. Geometrie der Berührungstransformationen. Leipzig: Teubner.

    Google Scholar 

  • Nabonnand, Philippe. 2008. La théorie des Würfe de von Staudt – Une irruption de l’algèbre dans la géométrie pure. Archive for History of Exact Sciences 62 (2008): 202–242.

    Google Scholar 

  • Plücker, Julius. 1865. On a New Geometry of Space. Philosophical Transactions of the Royal Society of London 155: 725–791.

    Google Scholar 

  • Plücker, Julius. 1868. Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement, Erste Abteilung. Leipzig: Teubner.

    Google Scholar 

  • Plücker, Julius. 1869. Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement, Zweite Abteilung, hrsg. F. Klein. Leipzig: Teubner.

    Google Scholar 

  • Rowe, David E. 1988. Der Briefwechsel Sophus Lie-Felix Klein, eine Einsicht in ihre persönlichen und wissenschaftlichen Beziehungen. NTM. Schriftenreihe für Geschichte der Naturwissenschaften, Technik und Medizin 25 (1): 37–47.

    MathSciNet  Google Scholar 

  • Rowe, David E. 1989. Klein, Lie, and the Geometric Background of the Erlangen Program. In The History of Modern Mathematics: Ideas and Their Reception, ed. D. E. Rowe and J. McCleary, vol. 1, 209–273. Boston: Academic Press.

    Google Scholar 

  • Rowe, David E. 2012. Einstein and Relativity. What Price Fame? Science in Context 25 (2): 197–246.

    MathSciNet  Google Scholar 

  • Rowe, David E. 2016. Segre, Klein, and the Theory of Quadratic Line Complexes. In From Classical to Modern Algebraic Geometry: Corrado Segre’s Mastership and Legacy, ed. G. Casnati, A. Conte, L. Gatto, L., Giacardi, M. Marchisio, and A. Verra, Trends in the History of Science, Trends in the History of Science, 243–263. Basel: Birkhäuser.

    Google Scholar 

  • Rowe, David E. 2019. Klein, Lie and Their Early Work on Quartic Surfaces. In Cogliati (2019), 171–198.

  • Rowe, David E. 2022a. Felix Klein and Emmy Noether on Invariant Theory and Variational Principles. In The Philosophy and Physics of Noether’s Theorems, ed. James Read and Nicholas Teh, 25–51. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rowe, David E. 2022b. Models from the Nineteenth Century Used for Visualizing Optical Phenomena and Line Geometry. In Model and Mathematics: From the 19th to the 21st Century, ed. Michael Friedman and Karin Krauthausen, 175–199. Basel: Springer.

    Google Scholar 

  • Scholz, Erhard. 1980. Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poincaré. Boston: Birkhäuser.

    Google Scholar 

  • Seidl, Ernst, Frank Loose, Edgar Bierende, Hrsg. 2018. Mathematik mit Modellen. Tübingen: Schriften des Museums der Universität Tübingen MUT.

    Google Scholar 

  • Struik, Dirk Jan. 1961. Lectures on Classical Differential Geometry, 2nd ed. New York: Dover.

    Google Scholar 

  • Stubhaug, Arild. 2002. The Mathematician Sophus Lie. Heidelberg: Springer-Verlag.

    Google Scholar 

  • Tobies, Renate. 2021. Felix Klein: Visions for Mathematics, Applications, and Education. Cham Switzerland: Birkhäuser.

    Google Scholar 

  • Tobies, Renate, and David E. Rowe 1990. Korrespondenz Felix Klein-Adolf Mayer. Leipzig: Teubner Archiv zur Mathematik.

    Google Scholar 

  • Voelke, Jean-Daniel. 2008. Le théorème fondamental de la géométrie projective: évolution de sa preuve entre 1847 et 1900. Archive for History of Exact Sciences 62 (2008): 243–296.

    MathSciNet  Google Scholar 

  • Volkert, Klaus. 2013. Das Undenkbare denken. Die Rezeption der nichteuklidischen Geometrie im deutschsprachigen Raum (1860–1900). Heidelberg: Springer.

    Google Scholar 

  • Whiteside, Derek Thomas. 1967–1981. The Mathematical Papers of Isaac Newton, 8 vols. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wiescher, Michael. 2016. Julius Plücker, Familie und Studienjahre. Sudhoffs Archiv 100 (1): 52–82.

    Google Scholar 

  • Yaglom, I. M. 1988. Felix Klein and Sophus Lie: Evolution of the Idea of Symmetry in the Nineteenth Century. Trans. Sergei Sossinsky, Boston: Birkhäuser.

    Google Scholar 

Download references

Acknowledgements

Among his many other contributions to the history of mathematics over the course of a distinguished career, Jeremy Gray has also contributed a great deal toward enriching our understanding of major parts of Felix Klein’s mathematical work. He gave prominent attention to Klein’s papers on algebra and function theory from the late 1870s and early 1880s in Linear Differential Equations and Group Theory from Riemann to Poincaré (Gray 2008), which was first published in 1986. For those who read German, I would also recommend Erhard Scholz’s history of the emergence of the concept of manifolds (Scholz 1980), as these two studies complement one another very nicely. More recently, Jeremy has made the case for the importance of Klein’s contributions to Galois geometry (Gray 2018, 171–188; Gray 2019). Alongside these works, he also dared to write an intellectual biography of Henri Poincaré (Gray 2013), thereby filling one of the yawning gaps in the literature. Having benefited from these works and many others over the course of my career, it gives me great pleasure to take part in this celebration of Jeremy’s 75th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Rowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rowe, D.E. (2023). On Felix Klein’s Early Geometrical Works, 1869–1872. In: Chemla, K., Ferreirós, J., Ji, L., Scholz, E., Wang, C. (eds) The Richness of the History of Mathematics. Archimedes, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-031-40855-7_6

Download citation

Publish with us

Policies and ethics