Skip to main content

Influence of Watering of Khibiny Mountains on the Earthquake-Size Distribution

  • Conference paper
  • First Online:
Problems of Geocosmos—2022 (ICS 2022)

Abstract

According to the long-term earthquake statistic and the data of monitoring of water inflows carried out at the apatite-nepheline deposits of the Khibiny massif, the authors have revealed a statistically significant decrease in the b-values of the Gutenberg-Richter law during the period of high watering (May–October) compared with the period of low watering (November–April). A sharp increase in seismicity (a-value of the Gutenberg-Richter law) with the beginning of the watering increase in the deposits of the Khibiny massif caused by the melting of snow accumulated over the winter is demonstrated. A decrease in the strength of rocks and the dilatancy of cracks due to the influence of additional pore pressure can serve as an explanation for the dependence of the seismic regime on the change in the level of watering of the rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baranov, S.V., Zhukova, S.A., Korchak, P.A., Shebalin, P.N.: Productivity of mining-induced seismicity. Izvestiya, Physics of the Solid Earth 56(3), 326–336 (2020). https://doi.org/10.1134/S1069351320030015

  2. Costain, J.K.: Groundwater recharge as the trigger of naturally occurring intraplate earthquakes. Geological Society, London, Special Publications 432(1), 91–118 (2017). https://doi.org/10.1144/SP432.9

  3. Fedotova, I., Kozyrev, A., Yunga, S.: Mine-induced seismicity in the central part Kola Peninsula in Russia, contribution of rock mechanics to the new century. In: Proceedings of the ISRM International Symposium: Third Asian Rock Mechanics Symposium, Kyoto, Japan, Nov (2004)

    Google Scholar 

  4. Fluid injection for rockburst control in deep mining, U.S. Rock Mechanics/Geomechanics Symposium, vol. All Days (1992). ARMA-92-0111

    Google Scholar 

  5. Gibowicz, S.J., Lasocki, S.: Seismicity induced by mining: Ten years later. Advances in Geophysics, 44, 39–181. (2001). https://doi.org/10.1016/S0065-2687(00)80007-2

  6. Gutenberg, B., Richter, C.F.: Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34(4), 185–188 (1944). https://doi.org/10.1785/BSSA0340040185

  7. Hainzl, S., Ben-Zion, Y., Cattania, C., Wassermann, J.: Testing atmospheric and tidal earthquake triggering at Mt. Hochstaufen, Germany. Journal of Geophysical Research: Solid Earth 118(10), 5442–5452 (2013). https://doi.org/10.1002/jgrb.50387

  8. Hainzl, S., Kraft, T., Wassermann, J., Igel, H., Schmedes, E.: Evidence for rainfall-triggered earthquake activity. Geophysical Research Letters 33(19) L19303 (2006). https://doi.org/10.1029/2006GL027642

  9. Heinicke, J., Woith, H., Alexandrakis, C., Buske, S., Telesca, L.: Can hydroseismicity explain recurring earthquake swarms in NW-Bohemia? Geophysical Journal International 212(1), 211–228 (2017). https://doi.org/10.1093/gji/ggx412

  10. Kartseva, T., Smirnov, V., Patonin, A., Sergeev, D., Shikhova, N., Ponomarev, A., Stroganova, S., Mikhailov, V.: Initiation of rock fracture by fluids of different viscosities. Izvestiya, Physics of the Solid Earth 58(4), 576–590 (2022). https://doi.org/10.1134/S106935132204005X

  11. Korchak, P., Zhukova, S., Menshikov, P.: Formation and development of the monitoring system for seismic processes in the production area of JSC “Apatit”. Gornyi Journal (10), 42–46 (2014)

    Google Scholar 

  12. Kozyrev, A., Semenova, I., Zemtsovskiy, A.: The variants of advanced unloading zone creation on the deep levels of the kukisvumchorr deposit. Mining informational and analytical bulletin (4), 231–245 (2016). In Russian.

    Google Scholar 

  13. Kozyrev, A., Semenova, I., Zemtsovskiy, A.: Investigation of geomechanical features of the rock mass in mining of two contiguous deposits under tectonic stresses. Procedia Engineering 191, 324–331 (2017). https://doi.org/10.1016/j.proeng.2017.05.188. ISRM European Rock Mechanics Symposium EUROCK 2017

  14. Kozyrev, A., Zhukova, S., A.S., B.: Influence of water content on seismic activity of rocks mass in apatite mining in Khibiny. Gornyi Journal (1), 31–36 (2021). https://doi.org/10.17580/gzh.2021.01.06

  15. Marzocchi, W., Sandri, L.: A review and new insights on the estimation of the \(b\)-value and its uncertainty. Annals of Geophysics 46 (2003). https://doi.org/10.4401/ag-3472

  16. Maystrenko, Y.P., Bronner, M., Olesen, O., Saloranta, T.M., Slagstad, T.: Atmospheric precipitation and anomalous upper mantle in relation to intraplate seismicity in Norway. Tectonics 39(9), e2020TC006070 (2020). https://doi.org/10.1029/2020TC006070

  17. Onokhin, F.: Particularities of the structures of the Khibiny massif and apatite-nepheline deposits. Nauka (1975). In Russian

    Google Scholar 

  18. Phosphate segment upstream. https://ar2019.phosagro.com/strategic-report/operational-review/phosphate-segment-upstream?ysclid=l9qtw1t0ao568532121. Last accessed 2022/11/10

  19. Pintori, F., Serpelloni, E., Longuevergne, L., Garcia, A., Faenza, L., D’Alberto, L., Gualandi, A., Belardinelli, M.E.: Mechanical response of shallow crust to groundwater storage variations: Inferences from deformation and seismic observations in the Eastern Southern Alps, Italy. Journal of Geophysical Research: Solid Earth 126(2), e2020JB020586 (2021). https://doi.org/10.1029/2020JB020586

  20. Renner, J., Steeb, H.: Modeling of Fluid Transport in Geothermal Research, pp. 1–55. Springer Berlin Heidelberg, Berlin, Heidelberg (2020). https://doi.org/10.1007/978-3-642-27793-1_81-2

  21. Scholz, C.H.: The Mechanics of Earthquakes and Faulting, 3 edn. Cambridge University Press (2019). https://doi.org/10.1017/9781316681473

  22. Smirnov, V., Ponomarev, A.: Physics of transient regimes. Russian Academy of Sciences (2020). In Russian.

    Google Scholar 

  23. Smirnov, V., Potanina, M., Kartseva, T., Ponomarev, A., Patonin, A., Mikhailov, V., Sergeev, D.: Seasonal variations in the b-value of the reservoir-triggered seismicity in the koyna–warna region, western india. Izvestiya, Physics of the Solid Earth 58(3), 364–378 (2022). https://doi.org/10.1134/S1069351322030077

  24. Talwani, P.: On the nature of reservoir-induced seismicity. Pure and applied geophysics 150(3), 473–492 (1997). https://doi.org/10.1007/s000240050089

    Article  ADS  Google Scholar 

  25. Terzaghi, K., Peck, R.B., Mesri, G.: Soil mechanics in engineering practice. John Wiley & Sons (1996)

    Google Scholar 

  26. Utsu, T.: A statistical significance test of the difference in b-value between two earthquake groups. Journal of Physics of the Earth 14(2), 37–40 (1966). https://doi.org/10.4294/jpe1952.14.37

  27. Zaliapin, I., Ben-Zion, Y.: A global classification and characterization of earthquake clusters. Geophysical Journal International 207(1), 608–634 (2016). https://doi.org/10.1093/gji/ggw300

  28. Zhang, L., Liao, W., Chen, Z., Li, J., Yao, Y., Tong, G., Zhao, Y., Zhou, Z.: Variations in seismic parameters for the earthquakes during loading and unloading periods in the three gorges reservoir area. Scientific Reports 12(1), 11211 (2022). https://doi.org/10.1038/s41598-022-15362-9

  29. Zhukova, S.: The relationship of hydrogeological situation and activization of seismic activity on apatite circus deposit and Rasvumchorr deposit. Mining informational and analytical bulletin (scientific and technical journal) (1), 319–329 (2015). In Russian.

    Google Scholar 

  30. Zhukova, S., Zhuravleva, O., Onuprienko, V., Streshnev, A.: Seismic behavior of rock mass in mining rockburst-hazardous deposits in the khibiny massif. Mining informational and analytical bulletin (7), 5–17 (2022). https://doi.org/10.25018/0236_1493_2022_7_0_5. In Russian.

  31. Zoback, M.D., Harjes, H.P.: Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. Journal of Geophysical Research: Solid Earth 102(B8), 18,477–18,491 (1997). https://doi.org/10.1029/96JB02814

Download references

Financing

The research was supported by the Russian Science Foundation, Project No. 22-27-20125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Baranov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhukova, S., Motorin, A., Baranov, S. (2023). Influence of Watering of Khibiny Mountains on the Earthquake-Size Distribution. In: Kosterov, A., Lyskova, E., Mironova, I., Apatenkov, S., Baranov, S. (eds) Problems of Geocosmos—2022. ICS 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-40728-4_12

Download citation

Publish with us

Policies and ethics